OctaCore/config/glsl/smaa.cfg

624 lines
23 KiB
INI

// Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com)
// Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com)
// Copyright (C) 2013 Belen Masia (bmasia@unizar.es)
// Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com)
// Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
// of the Software, and to permit persons to whom the Software is furnished to
// do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software. As clarification, there
// is no requirement that the copyright notice and permission be included in
// binary distributions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// _______ ___ ___ ___ ___
// / || \/ | / \ / \
// | (---- | \ / | / ^ \ / ^ \
// \ \ | |\/| | / /_\ \ / /_\ \
// ----) | | | | | / _____ \ / _____ \
// |_______/ |__| |__| /__/ \__\ /__/ \__\
//
// E N H A N C E D
// S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G
//
// http://www.iryoku.com/smaa/
smaadefs = [
#define SMAA_PRESET @smaapreset
#if SMAA_PRESET == 1
#define SMAA_THRESHOLD 0.1
#define SMAA_MAX_SEARCH_STEPS 8
#define SMAA_MAX_SEARCH_STEPS_DIAG 0
#define SMAA_CORNER_ROUNDING 100
#elif SMAA_PRESET == 2
#define SMAA_THRESHOLD 0.1
#define SMAA_MAX_SEARCH_STEPS 16
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
#define SMAA_CORNER_ROUNDING 25
#elif SMAA_PRESET == 3
#define SMAA_THRESHOLD 0.05
#define SMAA_MAX_SEARCH_STEPS 32
#define SMAA_MAX_SEARCH_STEPS_DIAG 16
#define SMAA_CORNER_ROUNDING 25
#else
#define SMAA_THRESHOLD 0.15
#define SMAA_MAX_SEARCH_STEPS 4
#define SMAA_MAX_SEARCH_STEPS_DIAG 0
#define SMAA_CORNER_ROUNDING 100
#endif
#define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0
#define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0)
#define SMAA_AREATEX_MAX_DISTANCE 16
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
#define SMAA_AREATEX_WIDTH 160
#define SMAA_AREATEX_HEIGHT 560
#define SMAA_SEARCHTEX_WIDTH 66
#define SMAA_SEARCHTEX_HEIGHT 33
#define SMAA_AREATEX_SUBSAMPLES 80
@(? (smaaopt "g") [
#define SMAA_LUMA(color) (color.g)
] [
#define SMAA_LUMA(color) (color.a)
])
@(? (smaaopt "a") [
#define SMAA_AREA(vals) (vals.ra)
] [
#define SMAA_AREA(vals) (vals.rg)
])
@(? (|| (smaaopt "t") [smaaopt "s"]) [
#define SMAA_AREA_OFFSET(texcoord, offset) texcoord.y += offset*float(SMAA_AREATEX_SUBSAMPLES)
] [
#define SMAA_AREA_OFFSET(texcoord, offset)
])
]
shader 0 [SMAALumaEdgeDetection@smaapreset@smaaopts] [
in vec4 vvertex;
@(screentexcoord 0)
out vec2 texcoord0;
void main(void)
{
gl_Position = vvertex;
texcoord0 = vtexcoord0;
}
] [
@smaadefs
uniform sampler2DRect tex0;
in vec2 texcoord0;
layout(location = 0) out vec4 fragcolor;
void main(void)
{
// Calculate lumas:
float L = SMAA_LUMA(textureRect(tex0, texcoord0));
float Lleft = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(-1, 0)));
float Ltop = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(0, -1)));
// We do the usual threshold:
vec2 delta = abs(L - vec2(Lleft, Ltop));
vec2 edges = step(SMAA_THRESHOLD, delta);
// Then discard if there is no edge:
@(? (smaaopt "d") [
if (edges.x + edges.y == 0.0) discard;
else
] [
if (edges.x + edges.y > 0.0)
])
{
// Calculate right and bottom deltas:
float Lright = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(1, 0)));
float Lbottom = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(0, 1)));
// Calculate the maximum delta in the direct neighborhood:
vec2 maxDelta = max(delta, abs(L - vec2(Lright, Lbottom)));
// Calculate left-left and top-top deltas:
float Lleftleft = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(-2, 0)));
float Ltoptop = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(0, -2)));
// Calculate the final maximum delta:
maxDelta = max(maxDelta, abs(vec2(Lleft, Ltop) - vec2(Lleftleft, Ltoptop)));
/**
* Each edge with a delta in luma of less than 50% of the maximum luma
* surrounding this pixel is discarded. This allows to eliminate spurious
* crossing edges, and is based on the fact that, if there is too much
* contrast in a direction, that will hide contrast in the other
* neighbors.
* This is done after the discard intentionally as this situation doesn't
* happen too frequently (but it's important to do as it prevents some
* edges from going undetected).
*/
edges *= step(max(maxDelta.x, maxDelta.y), SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta);
}
fragcolor = vec4(edges, 0.0, 0.0);
}
]
shader 0 [SMAAColorEdgeDetection@smaapreset@smaaopts] [
in vec4 vvertex;
@(screentexcoord 0)
out vec2 texcoord0;
void main(void)
{
gl_Position = vvertex;
texcoord0 = vtexcoord0;
}
] [
@smaadefs
uniform sampler2DRect tex0;
in vec2 texcoord0;
layout(location = 0) out vec4 fragcolor;
void main(void)
{
// Calculate color deltas:
vec3 C = textureRect(tex0, texcoord0).rgb;
vec3 Cleft = abs(C - textureRectOffset(tex0, texcoord0, ivec2(-1, 0)).rgb);
vec3 Ctop = abs(C - textureRectOffset(tex0, texcoord0, ivec2(0, -1)).rgb);
vec2 delta;
delta.x = max(max(Cleft.r, Cleft.g), Cleft.b);
delta.y = max(max(Ctop.r, Ctop.g), Ctop.b);
// We do the usual threshold:
vec2 edges = step(SMAA_THRESHOLD, delta);
// Then discard if there is no edge:
@(? (smaaopt "d") [
if (edges.x + edges.y == 0.0) discard;
else
] [
if (edges.x + edges.y > 0.0)
])
{
// Calculate right and bottom deltas:
vec3 Cright = abs(C - textureRectOffset(tex0, texcoord0, ivec2(1, 0)).rgb);
vec3 Cbottom = abs(C - textureRectOffset(tex0, texcoord0, ivec2(0, 1)).rgb);
// Calculate left-left and top-top deltas:
vec3 Cleftleft = abs(C - textureRectOffset(tex0, texcoord0, ivec2(-2, 0)).rgb);
vec3 Ctoptop = abs(C - textureRectOffset(tex0, texcoord0, ivec2(0, -2)).rgb);
// Calculate the maximum delta in the direct neighborhood:
vec3 t = max(max(Cright, Cbottom), max(Cleftleft, Ctoptop));
// Calculate the final maximum delta:
float maxDelta = max(max(delta.x, delta.y), max(max(t.r, t.g), t.b));
// Local contrast adaptation in action:
edges *= step(maxDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta);
}
fragcolor = vec4(edges, 0.0, 0.0);
}
]
shader 0 [SMAABlendingWeightCalculation@smaapreset@smaaopts] [
@smaadefs
in vec4 vvertex;
@(screentexcoord 0)
out vec2 texcoord0, texcoord1, texcoord2, texcoord3, texcoord4, texcoord5;
void main(void)
{
gl_Position = vvertex;
texcoord0 = vtexcoord0;
// We will use these offsets for the searches later on (see PSEUDO_GATHER4):
texcoord1 = vtexcoord0 + vec2( -0.25, -0.125);
texcoord2 = vtexcoord0 + vec2( 1.25, -0.125);
texcoord3 = vtexcoord0 + vec2(-0.125, -0.25);
texcoord4 = vtexcoord0 + vec2(-0.125, 1.25);
texcoord5 = vtexcoord0 + vec2( 0.25, 0.0);
}
] [
@smaadefs
in vec2 texcoord0, texcoord1, texcoord2, texcoord3, texcoord4, texcoord5;
uniform sampler2DRect tex0, tex1, tex2;
uniform vec4 subsamples;
layout(location = 0) out vec4 fragcolor;
#if __VERSION__ >= 130 || defined(GL_EXT_gpu_shader4)
#define SMAARound(e) round(e)
#else
#define SMAARound(e) floor(e + 0.5)
#endif
//-----------------------------------------------------------------------------
// Diagonal Search Functions
#if SMAA_MAX_SEARCH_STEPS_DIAG > 0
/**
* Allows to decode two binary values from a bilinear-filtered access.
*/
#define SMAADecodeDiagBilinearAccess(e) (e * abs(6.0 * e - 5.0))
/**
* These functions allows to perform diagonal pattern searches.
*/
float SMAASearchDiagRightUp(void) {
vec2 e = textureRectOffset(tex0, texcoord0, ivec2(1, -1)).rg;
vec2 texcoord = texcoord0 + vec2(1.0, -1.0);
for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) {
if (e.x + e.y < 1.5) break;
texcoord += vec2(1.0, -1.0);
e = textureRect(tex0, texcoord).rg;
}
return (texcoord.x - texcoord0.x) - 1.0;
}
float SMAASearchDiagLeftDown(void) {
vec2 e = textureRectOffset(tex0, texcoord0, ivec2(-1, 1)).rg;
vec2 texcoord = texcoord0 + vec2(-1.0, 1.0);
for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) {
if (e.x + e.y < 1.5) break;
texcoord += vec2(-1.0, 1.0);
e = textureRect(tex0, texcoord).rg;
}
return (texcoord0.x - texcoord.x) - 1.0 + SMAARound(e.y);
}
float SMAASearchDiagLeftUp(void) {
vec2 e = textureRectOffset(tex0, texcoord5, ivec2(-1, -1)).rg;
vec2 texcoord = texcoord5 + vec2(-1.0, -1.0);
for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) {
if (SMAADecodeDiagBilinearAccess(e.x) + e.y < 1.5) break;
texcoord += vec2(-1.0, -1.0);
e = textureRect(tex0, texcoord).rg;
}
return (texcoord5.x - texcoord.x) - 1.0;
}
float SMAASearchDiagRightDown(void) {
vec2 e = textureRectOffset(tex0, texcoord5, ivec2(1, 1)).rg;
vec2 texcoord = texcoord5 + vec2(1.0, 1.0);
for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) {
if (SMAADecodeDiagBilinearAccess(e.x) + e.y < 1.5) break;
texcoord += vec2(1.0, 1.0);
e = textureRect(tex0, texcoord).rg;
}
return (texcoord.x - texcoord5.x) - 1.0 + SMAARound(e.y);
}
/**
* Similar to SMAAArea, this calculates the area corresponding to a certain
* diagonal distance and crossing edges 'e'.
*/
vec2 SMAAAreaDiag(vec2 dist, vec2 e, float offset) {
vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist;
// We do a scale and bias for mapping to texel space:
texcoord = texcoord + 0.5;
// Diagonal areas are on the second half of the texture:
texcoord.x += 0.5*float(SMAA_AREATEX_WIDTH);
// Move to proper place, according to the subpixel offset:
SMAA_AREA_OFFSET(texcoord, offset);
return SMAA_AREA(textureRect(tex1, texcoord));
}
/**
* This searches for diagonal patterns and returns the corresponding weights.
*/
vec2 SMAACalculateDiagWeights(vec2 e) {
vec2 weights = vec2(0.0);
vec2 d;
d.x = e.r > 0.5 ? SMAASearchDiagLeftDown() : 0.0;
d.y = SMAASearchDiagRightUp();
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
vec4 coords = vec4(0.25 - d.x, d.x, d.y, -0.25 - d.y) + texcoord0.xyxy;
vec4 c;
c.xy = textureRectOffset(tex0, coords.xy, ivec2(-1, 0)).rg;
c.zw = textureRectOffset(tex0, coords.zw, ivec2( 1, 0)).rg;
c.xz = SMAADecodeDiagBilinearAccess(c.xz);
c = SMAARound(c);
vec2 e = 2.0 * c.yw + c.xz;
e *= step(d, vec2(float(SMAA_MAX_SEARCH_STEPS_DIAG) - 0.5));
weights += SMAAAreaDiag(d, e, subsamples.z);
}
d.x = SMAASearchDiagLeftUp();
d.y = SMAADecodeDiagBilinearAccess(e.r) > 0.5 ? SMAASearchDiagRightDown() : 0.0;
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
vec4 coords = vec4(-d.xx, d.yy) + texcoord0.xyxy;
vec4 c;
c.x = textureRectOffset(tex0, coords.xy, ivec2(-1, 0)).g;
c.y = textureRectOffset(tex0, coords.xy, ivec2( 0, -1)).r;
c.zw = textureRectOffset(tex0, coords.zw, ivec2( 1, 0)).gr;
vec2 e = 2.0 * c.xz + c.yw;
e *= step(d, vec2(float(SMAA_MAX_SEARCH_STEPS_DIAG) - 0.5));
weights += SMAAAreaDiag(d, e, subsamples.w).gr;
}
return weights;
}
#endif
//-----------------------------------------------------------------------------
// Horizontal/Vertical Search Functions
/**
* This allows to determine how much length should we add in the last step
* of the searches. It takes the bilinearly interpolated edge (see
* PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
* crossing edges are active.
*/
float SMAASearchLength(vec2 e, float bias, float scale) {
e.r = bias + e.r * scale;
return 255.0 * textureRect(tex2, e*vec2(float(SMAA_SEARCHTEX_WIDTH), float(SMAA_SEARCHTEX_HEIGHT))).r;
}
/**
* Horizontal/vertical search functions for the 2nd pass.
*/
float SMAASearchXLeft(void) {
/**
* PSEUDO_GATHER4
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
* sample between edge, thus fetching four edges in a row.
* Sampling with different offsets in each direction allows to disambiguate
* which edges are active from the four fetched ones.
*/
vec2 e = textureRect(tex0, texcoord1).rg;
vec2 texcoord = texcoord1;
for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) {
if(e.g <= 0.8281 || e.r > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line?
texcoord.x -= 2.0;
e = textureRect(tex0, texcoord).rg;
}
// We correct the previous (-0.25, -0.125) offset we applied:
// The searches are bias by 1, so adjust the coords accordingly:
// Disambiguate the length added by the last step:
return texcoord.x + (0.25 + 1.0) - SMAASearchLength(e, 0.0, 0.5);
}
float SMAASearchXRight(void) {
vec2 e = textureRect(tex0, texcoord2).rg;
vec2 texcoord = texcoord2;
for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) {
if(e.g <= 0.8281 || e.r > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line?
texcoord.x += 2.0;
e = textureRect(tex0, texcoord).rg;
}
return texcoord.x - (0.25 + 1.0) + SMAASearchLength(e, 0.5, 0.5);
}
float SMAASearchYUp(void) {
vec2 e = textureRect(tex0, texcoord3).rg;
vec2 texcoord = texcoord3;
for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) {
if(e.r <= 0.8281 || e.g > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line?
texcoord.y -= 2.0;
e = textureRect(tex0, texcoord).rg;
}
return texcoord.y + (0.25 + 1.0) - SMAASearchLength(e.gr, 0.0, 0.5);
}
float SMAASearchYDown(void) {
vec2 e = textureRect(tex0, texcoord4).rg;
vec2 texcoord = texcoord4;
for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) {
if(e.r <= 0.8281 || e.g > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line?
texcoord.y += 2.0;
e = textureRect(tex0, texcoord).rg;
}
return texcoord.y - (0.25 + 1.0) + SMAASearchLength(e.gr, 0.5, 0.5);
}
/**
* Ok, we have the distance and both crossing edges. So, what are the areas
* at each side of current edge?
*/
vec2 SMAAArea(vec2 dist, vec2 e, float offset) {
// SMAAArea below needs a sqrt, as the areas texture is compressed
// quadratically:
// Rounding prevents precision errors of bilinear filtering:
vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE) * SMAARound(4.0 * e) + sqrt(dist);
// We do a scale and bias for mapping to texel space:
texcoord = texcoord + 0.5;
// Move to proper place, according to the subpixel offset:
SMAA_AREA_OFFSET(texcoord, offset);
return SMAA_AREA(textureRect(tex1, texcoord));
}
//-----------------------------------------------------------------------------
// Corner Detection Functions
#if SMAA_CORNER_ROUNDING < 100
vec2 SMAADetectHorizontalCornerPattern(vec3 coords, vec2 d) {
vec2 e;
if(d.x >= d.y) coords.x = coords.z + 1.0 - 0.5*step(d.x, d.y);
e.r = textureRectOffset(tex0, coords.xy, ivec2(0, 1)).r;
e.g = textureRectOffset(tex0, coords.xy, ivec2(0, -2)).r;
return clamp(1.0 - (1.0 - SMAA_CORNER_ROUNDING_NORM) * e, 0.0, 1.0);
}
vec2 SMAADetectVerticalCornerPattern(vec3 coords, vec2 d) {
vec2 e;
if(d.x >= d.y) coords.y = coords.z + 1.0 - 0.5*step(d.x, d.y);
e.r = textureRectOffset(tex0, coords.xy, ivec2( 1, 0)).g;
e.g = textureRectOffset(tex0, coords.xy, ivec2(-2, 0)).g;
return clamp(1.0 - (1.0 - SMAA_CORNER_ROUNDING_NORM) * e, 0.0, 1.0);
}
#endif
//-----------------------------------------------------------------------------
// Blending Weight Calculation Pixel Shader (Second Pass)
void main(void)
{
vec4 weights = vec4(0.0);
vec2 e = textureRect(tex0, texcoord5).rg;
if (e.g > 0.5) { // Edge at north
#if SMAA_MAX_SEARCH_STEPS_DIAG > 0
// Diagonals have both north and west edges, so searching for them in
// one of the boundaries is enough.
weights.rg = SMAACalculateDiagWeights(e);
// We give priority to diagonals, so if we find a diagonal we skip
// horizontal/vertical processing.
if (weights.r + weights.g == 0.0) {
#endif
// Find the distance to the left:
vec3 coords;
coords.x = SMAASearchXLeft();
coords.y = texcoord3.y; // texcoord3.y = texcoord0.y - 0.25 (CROSSING_OFFSET)
// Find the distance to the right:
coords.z = SMAASearchXRight();
// We want the distances to be in pixel units (doing this here allow to
// better interleave arithmetic and memory accesses):
vec2 d = SMAARound(abs(coords.xz - texcoord0.x));
// Now fetch the left crossing edges, two at a time using bilinear
// filtering. Sampling at -0.25 (see CROSSING_OFFSET) enables to
// discern what value each edge has:
vec2 e;
e.x = textureRect(tex0, coords.xy).r;
// Fetch the right crossing edges:
e.y = textureRectOffset(tex0, coords.zy, ivec2(1, 0)).r;
// Ok, we know how this pattern looks like, now it is time for getting
// the actual area:
weights.rg = SMAAArea(d, e, subsamples.y);
#if SMAA_CORNER_ROUNDING < 100
// Fix corners:
coords.y = texcoord0.y;
weights.rg *= SMAADetectHorizontalCornerPattern(coords, d);
#endif
#if SMAA_MAX_SEARCH_STEPS_DIAG > 0
} else
e.r = 0.0; // Skip vertical processing.
#endif
}
if (e.r > 0.5) { // Edge at west
// Find the distance to the top:
vec3 coords;
coords.y = SMAASearchYUp();
coords.x = texcoord1.x; // texcoord1.x = texcoord0.x - 0.25;
// Find the distance to the bottom:
coords.z = SMAASearchYDown();
// We want the distances to be in pixel units:
vec2 d = SMAARound(abs(coords.yz - texcoord0.y));
// Fetch the top crossing edges:
vec2 e;
e.x = textureRect(tex0, coords.xy).g;
// Fetch the bottom crossing edges:
e.y = textureRectOffset(tex0, coords.xz, ivec2(0, 1)).g;
// Get the area for this direction:
weights.ba = SMAAArea(d, e, subsamples.x);
#if SMAA_CORNER_ROUNDING < 100
// Fix corners:
coords.x = texcoord0.x;
weights.ba *= SMAADetectVerticalCornerPattern(coords, d);
#endif
}
fragcolor = weights;
}
]
shader 0 [SMAANeighborhoodBlending@smaapreset@smaaopts] [
in vec4 vvertex;
@(screentexcoord 0)
out vec2 texcoord0;
void main(void)
{
gl_Position = vvertex;
texcoord0 = vtexcoord0;
}
] [
@smaadefs
in vec2 texcoord0;
uniform sampler2DRect tex0, tex1;
@(? (smaaopt "s") [uniform sampler2DRect tex2, tex3;])
layout(location = 0) out vec4 fragcolor;
// Neighborhood Blending Pixel Shader (Third Pass)
void main(void)
{
// Fetch the blending weights for current pixel:
vec4 a;
a.xz = textureRect(tex1, texcoord0).rb;
a.y = textureRectOffset(tex1, texcoord0, ivec2(0, 1)).g;
a.w = textureRectOffset(tex1, texcoord0, ivec2(1, 0)).a;
// Up to 4 lines can be crossing a pixel (one through each edge). We
// favor blending by choosing the line with the maximum weight for each
// direction:
vec2 offset;
offset.x = a.w > a.z ? a.w : -a.z; // left vs. right
offset.y = a.y > a.x ? a.y : -a.x; // top vs. bottom
// Then we go in the direction that has the maximum weight:
if (abs(offset.x) > abs(offset.y)) // horizontal vs. vertical
offset.y = 0.0;
else
offset.x = 0.0;
// We exploit bilinear filtering to mix current pixel with the chosen
// neighbor:
fragcolor = textureRect(tex0, texcoord0 + offset);
@(? (smaaopt "s") [
a.xz = textureRect(tex3, texcoord0).rb;
a.y = textureRectOffset(tex3, texcoord0, ivec2(0, 1)).g;
a.w = textureRectOffset(tex3, texcoord0, ivec2(1, 0)).a;
offset.x = a.w > a.z ? a.w : -a.z;
offset.y = a.y > a.x ? a.y : -a.x;
if (abs(offset.x) > abs(offset.y))
offset.y = 0.0;
else
offset.x = 0.0;
fragcolor = 0.5*(fragcolor + textureRect(tex2, texcoord0 + offset));
])
}
]