libostd/octa/algorithm.h

581 lines
16 KiB
C++

/* Algorithms for OctaSTD.
*
* This file is part of OctaSTD. See COPYING.md for futher information.
*/
#ifndef OCTA_ALGORITHM_H
#define OCTA_ALGORITHM_H
#include <math.h>
#include "octa/functional.h"
#include "octa/range.h"
#include "octa/utility.h"
#include "octa/initializer_list.h"
namespace octa {
/* partitioning */
template<typename _R, typename _U>
_R partition(_R range, _U pred) {
_R ret = range;
for (; !range.empty(); range.pop_front()) {
if (pred(range.front())) {
octa::swap(range.front(), ret.front());
ret.pop_front();
}
}
return ret;
}
template<typename _R, typename _P>
bool is_partitioned(_R range, _P pred) {
for (; !range.empty() && pred(range.front()); range.pop_front());
for (; !range.empty(); range.pop_front())
if (pred(range.front())) return false;
return true;
}
/* sorting */
namespace detail {
template<typename _R, typename _C>
void insort(_R range, _C compare) {
octa::RangeSize<_R> rlen = range.size();
for (octa::RangeSize<_R> i = 1; i < rlen; ++i) {
octa::RangeSize<_R> j = i;
octa::RangeReference<_R> v = range[i];
while (j > 0 && !compare(range[j - 1], v)) {
range[j] = range[j - 1];
--j;
}
range[j] = v;
}
}
template<typename _T, typename _U>
struct UnaryCompare {
const _T &val;
_U comp;
bool operator()(const _T &v) const { return comp(v, val); }
};
template<typename _R, typename _C>
void hs_sift_down(_R range, octa::RangeSize<_R> s,
octa::RangeSize<_R> e, _C compare) {
octa::RangeSize<_R> r = s;
while ((r * 2 + 1) <= e) {
octa::RangeSize<_R> ch = r * 2 + 1;
octa::RangeSize<_R> sw = r;
if (compare(range[sw], range[ch]))
sw = ch;
if (((ch + 1) <= e) && compare(range[sw], range[ch + 1]))
sw = ch + 1;
if (sw != r) {
octa::swap(range[r], range[sw]);
r = sw;
} else return;
}
}
template<typename _R, typename _C>
void heapsort(_R range, _C compare) {
octa::RangeSize<_R> len = range.size();
octa::RangeSize<_R> st = (len - 2) / 2;
for (;;) {
octa::detail::hs_sift_down(range, st, len - 1, compare);
if (st-- == 0) break;
}
octa::RangeSize<_R> e = len - 1;
while (e > 0) {
octa::swap(range[e], range[0]);
--e;
octa::detail::hs_sift_down(range, 0, e, compare);
}
}
template<typename _R, typename _C>
void introloop(_R range, _C compare, RangeSize<_R> depth) {
if (range.size() <= 10) {
octa::detail::insort(range, compare);
return;
}
if (depth == 0) {
octa::detail::heapsort(range, compare);
return;
}
octa::RangeReference<_R> p = range[range.size() / 2];
octa::swap(p, range.back());
_R r = octa::partition(range,
octa::detail::UnaryCompare<decltype(p), _C>{ p, compare });
_R l = range.slice(0, range.size() - r.size());
octa::swap(r.front(), r.back());
octa::detail::introloop(l, compare, depth - 1);
octa::detail::introloop(r, compare, depth - 1);
}
template<typename _R, typename _C>
void introsort(_R range, _C compare) {
octa::detail::introloop(range, compare, octa::RangeSize<_R>(2
* (log(range.size()) / log(2))));
}
} /* namespace detail */
template<typename _R, typename _C>
void sort(_R range, _C compare) {
octa::detail::introsort(range, compare);
}
template<typename _R>
void sort(_R range) {
sort(range, octa::Less<RangeValue<_R>>());
}
/* min/max(_element) */
template<typename _T>
inline const _T &min(const _T &a, const _T &b) {
return (a < b) ? a : b;
}
template<typename _T, typename _C>
inline const _T &min(const _T &a, const _T &b, _C compare) {
return compare(a, b) ? a : b;
}
template<typename _T>
inline const _T &max(const _T &a, const _T &b) {
return (a < b) ? b : a;
}
template<typename _T, typename _C>
inline const _T &max(const _T &a, const _T &b, _C compare) {
return compare(a, b) ? b : a;
}
template<typename _R>
inline _R min_element(_R range) {
_R r = range;
for (; !range.empty(); range.pop_front())
if (octa::min(r.front(), range.front()) == range.front())
r = range;
return r;
}
template<typename _R, typename _C>
inline _R min_element(_R range, _C compare) {
_R r = range;
for (; !range.empty(); range.pop_front())
if (octa::min(r.front(), range.front(), compare) == range.front())
r = range;
return r;
}
template<typename _R>
inline _R max_element(_R range) {
_R r = range;
for (; !range.empty(); range.pop_front())
if (octa::max(r.front(), range.front()) == range.front())
r = range;
return r;
}
template<typename _R, typename _C>
inline _R max_element(_R range, _C compare) {
_R r = range;
for (; !range.empty(); range.pop_front())
if (octa::max(r.front(), range.front(), compare) == range.front())
r = range;
return r;
}
template<typename _T>
inline _T min(std::initializer_list<_T> il) {
return octa::min_element(octa::each(il)).front();
}
template<typename _T, typename _C>
inline _T min(std::initializer_list<_T> il, _C compare) {
return octa::min_element(octa::each(il), compare).front();
}
template<typename _T>
inline _T max(std::initializer_list<_T> il) {
return octa::max_element(octa::each(il)).front();
}
template<typename _T, typename _C>
inline _T max(std::initializer_list<_T> il, _C compare) {
return octa::max_element(octa::each(il), compare).front();
}
/* clamp */
template<typename _T, typename _U>
inline _T clamp(const _T &v, const _U &lo, const _U &hi) {
return octa::max(_T(lo), octa::min(v, _T(hi)));
}
template<typename _T, typename _U, typename _C>
inline _T clamp(const _T &v, const _U &lo, const _U &hi, _C compare) {
return octa::max(_T(lo), octa::min(v, _T(hi), compare), compare);
}
/* algos that don't change the range */
template<typename _R, typename _F>
_F for_each(_R range, _F func) {
for (; !range.empty(); range.pop_front())
func(range.front());
return octa::move(func);
}
template<typename _R, typename _P>
bool all_of(_R range, _P pred) {
for (; !range.empty(); range.pop_front())
if (!pred(range.front())) return false;
return true;
}
template<typename _R, typename _P>
bool any_of(_R range, _P pred) {
for (; !range.empty(); range.pop_front())
if (pred(range.front())) return true;
return false;
}
template<typename _R, typename _P>
bool none_of(_R range, _P pred) {
for (; !range.empty(); range.pop_front())
if (pred(range.front())) return false;
return true;
}
template<typename _R, typename _T>
_R find(_R range, const _T &v) {
for (; !range.empty(); range.pop_front())
if (range.front() == v)
break;
return range;
}
template<typename _R, typename _P>
_R find_if(_R range, _P pred) {
for (; !range.empty(); range.pop_front())
if (pred(range.front()))
break;
return range;
}
template<typename _R, typename _P>
_R find_if_not(_R range, _P pred) {
for (; !range.empty(); range.pop_front())
if (!pred(range.front()))
break;
return range;
}
template<typename _R, typename _T>
RangeSize<_R> count(_R range, const _T &v) {
RangeSize<_R> ret = 0;
for (; !range.empty(); range.pop_front())
if (range.front() == v)
++ret;
return ret;
}
template<typename _R, typename _P>
RangeSize<_R> count_if(_R range, _P pred) {
RangeSize<_R> ret = 0;
for (; !range.empty(); range.pop_front())
if (pred(range.front()))
++ret;
return ret;
}
template<typename _R, typename _P>
RangeSize<_R> count_if_not(_R range, _P pred) {
RangeSize<_R> ret = 0;
for (; !range.empty(); range.pop_front())
if (!pred(range.front()))
++ret;
return ret;
}
template<typename _R>
bool equal(_R range1, _R range2) {
for (; !range1.empty(); range1.pop_front()) {
if (range2.empty() || (range1.front() != range2.front()))
return false;
range2.pop_front();
}
return range2.empty();
}
/* algos that modify ranges or work with output ranges */
template<typename _R1, typename _R2>
_R2 copy(_R1 irange, _R2 orange) {
for (; !irange.empty(); irange.pop_front())
orange.put(irange.front());
return orange;
}
template<typename _R1, typename _R2, typename _P>
_R2 copy_if(_R1 irange, _R2 orange, _P pred) {
for (; !irange.empty(); irange.pop_front())
if (pred(irange.front()))
orange.put(irange.front());
return orange;
}
template<typename _R1, typename _R2, typename _P>
_R2 copy_if_not(_R1 irange, _R2 orange, _P pred) {
for (; !irange.empty(); irange.pop_front())
if (!pred(irange.front()))
orange.put(irange.front());
return orange;
}
template<typename _R1, typename _R2>
_R2 move(_R1 irange, _R2 orange) {
for (; !irange.empty(); irange.pop_front())
orange.put(octa::move(irange.front()));
return orange;
}
template<typename _R>
void reverse(_R range) {
while (!range.empty()) {
octa::swap(range.front(), range.back());
range.pop_front();
range.pop_back();
}
}
template<typename _R1, typename _R2>
_R2 reverse_copy(_R1 irange, _R2 orange) {
for (; !irange.empty(); irange.pop_back())
orange.put(irange.back());
return orange;
}
template<typename _R, typename _T>
void fill(_R range, const _T &v) {
for (; !range.empty(); range.pop_front())
range.front() = v;
}
template<typename _R, typename _F>
void generate(_R range, _F gen) {
for (; !range.empty(); range.pop_front())
range.front() = gen();
}
template<typename _R1, typename _R2>
octa::Pair<_R1, _R2> swap_ranges(_R1 range1, _R2 range2) {
while (!range1.empty() && !range2.empty()) {
octa::swap(range1.front(), range2.front());
range1.pop_front();
range2.pop_front();
}
return octa::make_pair(range1, range2);
}
template<typename _R, typename _T>
void iota(_R range, _T value) {
for (; !range.empty(); range.pop_front())
range.front() = value++;
}
template<typename _R, typename _T>
_T foldl(_R range, _T init) {
for (; !range.empty(); range.pop_front())
init = init + range.front();
return init;
}
template<typename _R, typename _T, typename _F>
_T foldl(_R range, _T init, _F func) {
for (; !range.empty(); range.pop_front())
init = func(init, range.front());
return init;
}
template<typename _R, typename _T>
_T foldr(_R range, _T init) {
for (; !range.empty(); range.pop_back())
init = init + range.back();
return init;
}
template<typename _R, typename _T, typename _F>
_T foldr(_R range, _T init, _F func) {
for (; !range.empty(); range.pop_back())
init = func(init, range.back());
return init;
}
template<typename _T, typename _R>
struct MapRange: InputRange<
MapRange<_T, _R>, octa::RangeCategory<_T>, _R, _R, octa::RangeSize<_T>
> {
private:
_T p_range;
octa::Function<_R(octa::RangeReference<_T>)> p_func;
public:
MapRange(): p_range(), p_func() {}
template<typename _F>
MapRange(const _T &range, const _F &func):
p_range(range), p_func(func) {}
MapRange(const MapRange &it):
p_range(it.p_range), p_func(it.p_func) {}
MapRange(MapRange &&it):
p_range(move(it.p_range)), p_func(move(it.p_func)) {}
MapRange &operator=(const MapRange &v) {
p_range = v.p_range;
p_func = v.p_func;
return *this;
}
MapRange &operator=(MapRange &&v) {
p_range = move(v.p_range);
p_func = move(v.p_func);
return *this;
}
bool empty() const { return p_range.empty(); }
octa::RangeSize<_T> size() const { return p_range.size(); }
bool equals_front(const MapRange &r) const {
return p_range.equals_front(r.p_range);
}
bool equals_back(const MapRange &r) const {
return p_range.equals_front(r.p_range);
}
octa::RangeDifference<_T> distance_front(const MapRange &r) const {
return p_range.distance_front(r.p_range);
}
octa::RangeDifference<_T> distance_back(const MapRange &r) const {
return p_range.distance_back(r.p_range);
}
bool pop_front() { return p_range.pop_front(); }
bool pop_back() { return p_range.pop_back(); }
bool push_front() { return p_range.pop_front(); }
bool push_back() { return p_range.push_back(); }
octa::RangeSize<_T> pop_front_n(octa::RangeSize<_T> n) {
p_range.pop_front_n(n);
}
octa::RangeSize<_T> pop_back_n(octa::RangeSize<_T> n) {
p_range.pop_back_n(n);
}
octa::RangeSize<_T> push_front_n(octa::RangeSize<_T> n) {
return p_range.push_front_n(n);
}
octa::RangeSize<_T> push_back_n(octa::RangeSize<_T> n) {
return p_range.push_back_n(n);
}
_R front() const { return p_func(p_range.front()); }
_R back() const { return p_func(p_range.back()); }
_R operator[](octa::RangeSize<_T> idx) const {
return p_func(p_range[idx]);
}
MapRange<_T, _R> slice(octa::RangeSize<_T> start,
octa::RangeSize<_T> end) {
return MapRange<_T, _R>(p_range.slice(start, end), p_func);
}
};
namespace detail {
template<typename _R, typename _F> using MapReturnType
= decltype(declval<_F>()(octa::declval<octa::RangeReference<_R>>()));
}
template<typename _R, typename _F>
MapRange<_R, octa::detail::MapReturnType<_R, _F>> map(_R range,
_F func) {
return octa::MapRange<_R, octa::detail::MapReturnType<_R, _F>>(range,
func);
}
template<typename _T>
struct FilterRange: InputRange<
FilterRange<_T>, octa::CommonType<octa::RangeCategory<_T>,
octa::ForwardRangeTag>,
octa::RangeValue<_T>, octa::RangeReference<_T>, octa::RangeSize<_T>
> {
private:
_T p_range;
octa::Function<bool(octa::RangeReference<_T>)> p_pred;
void advance_valid() {
while (!p_range.empty() && !p_pred(front())) p_range.pop_front();
}
public:
FilterRange(): p_range(), p_pred() {}
template<typename _P>
FilterRange(const _T &range, const _P &pred): p_range(range),
p_pred(pred) {
advance_valid();
}
FilterRange(const FilterRange &it): p_range(it.p_range),
p_pred(it.p_pred) {
advance_valid();
}
FilterRange(FilterRange &&it): p_range(move(it.p_range)),
p_pred(move(it.p_pred)) {
advance_valid();
}
FilterRange &operator=(const FilterRange &v) {
p_range = v.p_range;
p_pred = v.p_pred;
advance_valid();
return *this;
}
FilterRange &operator=(FilterRange &&v) {
p_range = move(v.p_range);
p_pred = move(v.p_pred);
advance_valid();
return *this;
}
bool empty() const { return p_range.empty(); }
bool equals_front(const FilterRange &r) const {
return p_range.equals_front(r.p_range);
}
bool pop_front() {
bool ret = p_range.pop_front();
advance_valid();
return ret;
}
bool push_front() {
_T tmp = p_range;
if (!tmp.push_front()) return false;
while (!p_pred(tmp.front()))
if (!tmp.push_front())
return false;
p_range = tmp;
return true;
}
octa::RangeReference<_T> front() const { return p_range.front(); }
};
template<typename _R, typename _P>
FilterRange<_R> filter(_R range, _P pred) {
return octa::FilterRange<_R>(range, pred);
}
} /* namespace octa */
#endif