libostd/octa/internal/hashtable.h

261 lines
7.6 KiB
C++

/* Internal hash table implementation. Used as a base for set, map etc.
*
* This file is part of OctaSTD. See COPYING.md for futher information.
*/
#ifndef OCTA_INTERNAL_HASHTABLE_H
#define OCTA_INTERNAL_HASHTABLE_H
#include <string.h>
#include "octa/types.h"
#include "octa/utility.h"
#include "octa/memory.h"
#include "octa/range.h"
namespace octa {
template<typename T> struct HashRange;
namespace detail {
template<
typename B, /* contains methods specific to each ht type */
typename E, /* element type */
typename K, /* key type */
typename T, /* value type */
typename H, /* hash func */
typename C, /* equality check */
typename A /* allocator */
> struct Hashtable {
static constexpr octa::Size CHUNKSIZE = 64;
struct Chain {
E value;
Chain *next;
};
struct Chunk {
Chain chains[CHUNKSIZE];
Chunk *next;
};
octa::Size p_size;
octa::Size p_len;
Chunk *p_chunks;
Chain *p_unused;
using CPA = octa::AllocatorRebind<A, Chain *>;
using CHA = octa::AllocatorRebind<A, Chunk>;
using AllocPair = octa::detail::CompressedPair<CPA, CHA>;
using FuncPair = octa::detail::CompressedPair<H, C>;
using FAPair = octa::detail::CompressedPair<AllocPair, FuncPair>;
using DataPair = octa::detail::CompressedPair<Chain **, FAPair>;
using Range = octa::HashRange<E>;
using ConstRange = octa::HashRange<const E>;
DataPair p_data;
float p_maxlf;
const H &get_hash() const { return p_data.second().second().first(); }
const C &get_eq() const { return p_data.second().second().second(); }
CPA &get_cpalloc() { return p_data.second().first().first(); }
CHA &get_challoc() { return p_data.second().first().second(); }
Hashtable(octa::Size size, const H &hf, const C &eqf, const A &alloc):
p_size(size), p_len(0), p_chunks(nullptr), p_unused(nullptr),
p_data(nullptr, FAPair(AllocPair(alloc, alloc), FuncPair(hf, eqf))),
p_maxlf(1.0f) {
p_data.first() = octa::allocator_allocate(get_cpalloc(), size);
memset(p_data.first(), 0, size * sizeof(Chain *));
}
~Hashtable() {
octa::allocator_deallocate(get_cpalloc(), p_data.first(), p_size);
delete_chunks();
}
bool empty() const { return p_len == 0; }
octa::Size size() const { return p_len; }
Size max_size() const { return Size(~0) / sizeof(E); }
Chain *insert(octa::Size h) {
if (!p_unused) {
Chunk *chunk = octa::allocator_allocate(get_challoc(), 1);
octa::allocator_construct(get_challoc(), chunk);
chunk->next = p_chunks;
p_chunks = chunk;
for (Size i = 0; i < (CHUNKSIZE - 1); ++i)
chunk->chains[i].next = &chunk->chains[i + 1];
chunk->chains[CHUNKSIZE - 1].next = p_unused;
p_unused = chunk->chains;
}
Chain *c = p_unused;
p_unused = p_unused->next;
c->next = p_data.first()[h];
p_data.first()[h] = c;
++p_len;
return c;
}
template<typename U>
T &insert(octa::Size h, U &&key) {
Chain *c = insert(h);
B::set_key(c->value, octa::forward<U>(key));
return B::get_data(c->value);
}
template<typename U>
bool remove(const U &key) {
octa::Size h = get_hash()(key) & (p_size - 1);
Chain *c = p_data.first()[h];
Chain **p = &c;
while (c) {
if (get_eq()(key, B::get_key(c->value))) {
*p = c->next;
c->value.~E();
new (&c->value) E;
c->next = p_unused;
p_unused = c;
--p_len;
return true;
}
c = c->next;
p = &c;
}
return false;
}
void delete_chunks() {
for (Chunk *nc; p_chunks; p_chunks = nc) {
nc = p_chunks->next;
octa::allocator_destroy(get_challoc(), p_chunks);
octa::allocator_deallocate(get_challoc(), p_chunks, 1);
}
}
void clear() {
if (!p_len) return;
memset(p_data.first(), 0, p_size * sizeof(Chain *));
p_len = 0;
p_unused = nullptr;
delete_chunks();
}
template<typename U>
T *access_base(const U &key, octa::Size &h) const {
h = get_hash()(key) & (p_size - 1);
for (Chain *c = p_data.first()[h]; c; c = c->next) {
if (get_eq()(key, B::get_key(c->value)))
return &B::get_data(c->value);
}
return NULL;
}
template<typename U>
T *access(const U &key) const {
octa::Size h;
return access_base(key, h);
}
template<typename U, typename V>
T &access(const U &key, const V &val) {
octa::Size h;
T *found = access_base(key, h);
if (found) return *found;
return (insert(h, key) = val);
}
float load_factor() const { return p_len / float(p_size); }
float max_load_factor() const { return p_maxlf; }
void max_load_factor(float lf) { p_maxlf = lf; }
octa::Size bucket_count() const { return p_size; }
octa::Size max_bucket_count() const { return Size(~0) / sizeof(Chain); }
Range each() {
return Range(p_data.first(), bucket_count());
}
ConstRange each() const {
return ConstRange(p_data.first(), bucket_count());
}
ConstRange ceach() const {
return ConstRange(p_data.first(), bucket_count());
}
void swap(Hashtable &h) {
octa::swap(p_size, h.p_size);
octa::swap(p_len, h.p_len);
octa::swap(p_chunks, h.p_chunks);
octa::swap(p_unused, h.p_unused);
octa::swap(p_data, h.p_data);
}
};
} /* namespace detail */
template<typename T>
struct HashRange: octa::InputRange<HashRange<T>, octa::ForwardRangeTag, T> {
private:
struct Chain {
T value;
Chain *next;
};
Chain **p_chains;
Chain *p_node;
octa::Size p_num;
void advance() {
while (p_num > 0 && !p_chains[0]) {
--p_num;
++p_chains;
}
if (p_num > 0) {
p_node = p_chains[0];
--p_num;
++p_chains;
} else {
p_node = nullptr;
}
}
public:
HashRange(): p_chains(), p_num(0) {}
HashRange(void *ch, octa::Size n): p_chains((Chain **)ch), p_num(n) {
advance();
}
HashRange(const HashRange &v): p_chains(v.p_chains), p_node(v.p_node),
p_num(v.p_num) {}
HashRange &operator=(const HashRange &v) {
p_chains = v.p_chains;
p_node = v.p_node;
p_num = v.p_num;
return *this;
}
bool empty() const { return !p_node && p_num <= 0; }
bool pop_front() {
if (empty()) return false;
if (p_node->next) {
p_node = p_node->next;
return true;
}
p_node = nullptr;
advance();
return true;
}
bool equals_front(const HashRange &v) const {
return p_node == v.p_node;
}
T &front() const { return p_node->value; }
};
} /* namespace octa */
#endif