// physics.cpp: no physics books were hurt nor consulted in the construction of this code. // All physics computations and constants were invented on the fly and simply tweaked until // they "felt right", and have no basis in reality. Collision detection is simplistic but // very robust (uses discrete steps at fixed fps). #include "physics.hh" #include #include #include #include #include "console.hh" /* conoutf */ #include "ents.hh" #include "main.hh" // player, timings #include "rendergl.hh" // camera1 #include "rendermodel.hh" #include "octa.hh" #include "world.hh" #include "mpr.hh" const int MAXCLIPOFFSET = 4; const int MAXCLIPPLANES = 1024; static clipplanes clipcache[MAXCLIPPLANES]; static int clipcacheversion = -MAXCLIPOFFSET; static inline clipplanes &getclipbounds(const cube &c, const ivec &o, int size, int offset) { clipplanes &p = clipcache[int(&c - worldroot)&(MAXCLIPPLANES-1)]; if(p.owner != &c || p.version != clipcacheversion+offset) { p.owner = &c; p.version = clipcacheversion+offset; genclipbounds(c, o, size, p); } return p; } static inline clipplanes &getclipbounds(const cube &c, const ivec &o, int size, physent *d) { int offset = !(c.visible&0x80) || d->type==ENT_PLAYER ? 0 : 1; return getclipbounds(c, o, size, offset); } static inline int forceclipplanes(const cube &c, const ivec &o, int size, clipplanes &p) { if(p.visible&0x80) { bool collide = true, noclip = false; if(p.version&1) { collide = false; noclip = true; } genclipplanes(c, o, size, p, collide, noclip); } return p.visible; } static inline clipplanes &getclipplanes(const cube &c, const ivec &o, int size) { clipplanes &p = getclipbounds(c, o, size, c.visible&0x80 ? 2 : 0); if(p.visible&0x80) genclipplanes(c, o, size, p, false, false); return p; } void resetclipplanes() { clipcacheversion += MAXCLIPOFFSET; if(!clipcacheversion) { memset(clipcache, 0, sizeof(clipcache)); clipcacheversion = MAXCLIPOFFSET; } } ///////////////////////// ray - cube collision /////////////////////////////////////////////// #define INTERSECTPLANES(setentry, exit) \ float enterdist = -1e16f, exitdist = 1e16f; \ loopi(p.size) \ { \ float pdist = p.p[i].dist(v), facing = ray.dot(p.p[i]); \ if(facing < 0) \ { \ pdist /= -facing; \ if(pdist > enterdist) \ { \ if(pdist > exitdist) exit; \ enterdist = pdist; \ setentry; \ } \ } \ else if(facing > 0) \ { \ pdist /= -facing; \ if(pdist < exitdist) \ { \ if(pdist < enterdist) exit; \ exitdist = pdist; \ } \ } \ else if(pdist > 0) exit; \ } #define INTERSECTBOX(setentry, exit) \ loop(i, 3) \ { \ if(ray[i]) \ { \ float prad = fabs(p.r[i] * invray[i]), pdist = (p.o[i] - v[i]) * invray[i], pmin = pdist - prad, pmax = pdist + prad; \ if(pmin > enterdist) \ { \ if(pmin > exitdist) exit; \ enterdist = pmin; \ setentry; \ } \ if(pmax < exitdist) \ { \ if(pmax < enterdist) exit; \ exitdist = pmax; \ } \ } \ else if(v[i] < p.o[i]-p.r[i] || v[i] > p.o[i]+p.r[i]) exit; \ } vec hitsurface; /* extern'd */ static inline bool raycubeintersect(const clipplanes &p, const cube &c, const vec &v, const vec &ray, const vec &invray, float maxdist, float &dist) { int entry = -1, bbentry = -1; INTERSECTPLANES(entry = i, return false); INTERSECTBOX(bbentry = i, return false); if(exitdist < 0) return false; dist = max(enterdist+0.1f, 0.0f); if(dist < maxdist) { if(bbentry>=0) { hitsurface = vec(0, 0, 0); hitsurface[bbentry] = ray[bbentry]>0 ? -1 : 1; } else hitsurface = p.p[entry]; } return true; } static float hitentdist; static int hitent, hitorient; static float disttoent(octaentities *oc, const vec &o, const vec &ray, float radius, int mode, extentity *t) { vec eo, es; int orient = -1; float dist = radius, f = 0.0f; const vector &ents = entities::getents(); #define entintersect(type, func) do { \ loopv(oc->type) \ { \ extentity &e = *ents[oc->type[i]]; \ if(!(e.flags&EF_OCTA) || &e==t) continue; \ func; \ if(f0 && vec(ray).mul(f).add(o).insidebb(oc->o, oc->size)) \ { \ hitentdist = dist = f; \ hitent = oc->type[i]; \ hitorient = orient; \ } \ } \ } while(0) if((mode&RAY_POLY) == RAY_POLY) entintersect(mapmodels, { if(!mmintersect(e, o, ray, radius, mode, f)) continue; }); #define entselintersect(type) entintersect(type, { \ entselectionbox(e, eo, es); \ if(!rayboxintersect(eo, es, o, ray, f, orient)) continue; \ }) if((mode&RAY_ENTS) == RAY_ENTS) { entselintersect(other); entselintersect(mapmodels); entselintersect(decals); } return dist; } static float disttooutsideent(const vec &o, const vec &ray, float radius, int mode, extentity *t) { vec eo, es; int orient; float dist = radius, f = 0.0f; const vector &ents = entities::getents(); loopv(outsideents) { extentity &e = *ents[outsideents[i]]; if(!(e.flags&EF_OCTA) || &e == t) continue; entselectionbox(e, eo, es); if(!rayboxintersect(eo, es, o, ray, f, orient)) continue; if(f0) { hitentdist = dist = f; hitent = outsideents[i]; hitorient = orient; } } return dist; } #define INITRAYCUBE \ float dist = 0, dent = radius > 0 ? radius : 1e16f; \ vec v(o), invray(ray.x ? 1/ray.x : 1e16f, ray.y ? 1/ray.y : 1e16f, ray.z ? 1/ray.z : 1e16f); \ cube *levels[20]; \ levels[worldscale] = worldroot; \ int lshift = worldscale, elvl = mode&RAY_BB ? worldscale : 0; \ ivec lsizemask(invray.x>0 ? 1 : 0, invray.y>0 ? 1 : 0, invray.z>0 ? 1 : 0); \ #define CHECKINSIDEWORLD \ if(!insideworld(o)) \ { \ float disttoworld = 0, exitworld = 1e16f; \ loopi(3) \ { \ float c = v[i]; \ if(c<0 || c>=worldsize) \ { \ float d = ((invray[i]>0?0:worldsize)-c)*invray[i]; \ if(d<0) return (radius>0?radius:-1); \ disttoworld = max(disttoworld, 0.1f + d); \ } \ float e = ((invray[i]>0?worldsize:0)-c)*invray[i]; \ exitworld = min(exitworld, e); \ } \ if(disttoworld > exitworld) return (radius>0?radius:-1); \ v.add(vec(ray).mul(disttoworld)); \ dist += disttoworld; \ } #define DOWNOCTREE(disttoent) \ cube *lc = levels[lshift]; \ for(;;) \ { \ lshift--; \ lc += octastep(x, y, z, lshift); \ if(lc->ext && lc->ext->ents && lshift < elvl) \ { \ float edist = disttoent(lc->ext->ents, o, ray, dent, mode, t); \ if(edist < dent) \ { \ elvl = lshift; \ dent = min(dent, edist); \ } \ } \ if(lc->children==nullptr) break; \ lc = lc->children; \ levels[lshift] = lc; \ } #define FINDCLOSEST(xclosest, yclosest, zclosest) \ float dx = (lo.x+(lsizemask.x<= uint(worldsize)) exitworld; \ diff >>= lshift; \ if(!diff) exitworld; \ do \ { \ lshift++; \ diff >>= 1; \ } while(diff); float raycube(const vec &o, const vec &ray, float radius, int mode, int size, extentity *t) { if(ray.iszero()) return 0; INITRAYCUBE; CHECKINSIDEWORLD; int closest = -1, x = int(v.x), y = int(v.y), z = int(v.z); for(;;) { DOWNOCTREE(disttoent); int lsize = 1<0 || !(mode&RAY_SKIPFIRST)) && (((mode&RAY_CLIPMAT) && isclipped(c.material&MATF_VOLUME)) || ((mode&RAY_EDITMAT) && c.material != MAT_AIR) || (!(mode&RAY_PASS) && lsize==size && !isempty(c)) || isentirelysolid(c) || dent < dist) && (!(mode&RAY_CLIPMAT) || (c.material&MATF_CLIP)!=MAT_NOCLIP)) { if(dist < dent) { if(closest < 0) { float dx = ((x&(~0U<0 ? 0 : 1<0 ? 0 : 1<0 ? 0 : 1< dy ? (dx > dz ? 0 : 2) : (dy > dz ? 1 : 2); } hitsurface = vec(0, 0, 0); hitsurface[closest] = ray[closest]>0 ? -1 : 1; return dist; } return dent; } ivec lo(x&(~0U<0 || !(mode&RAY_SKIPFIRST)) && (!(mode&RAY_CLIPMAT) || (c.material&MATF_CLIP)!=MAT_NOCLIP)) return min(dent, dist+f); } FINDCLOSEST(closest = 0, closest = 1, closest = 2); if(radius>0 && dist>=radius) return min(dent, dist); UPOCTREE(return min(dent, radius>0 ? radius : dist)); } } float rayent(const vec &o, const vec &ray, float radius, int mode, int size, int &orient, int &ent) { hitent = -1; hitentdist = radius; hitorient = -1; float dist = raycube(o, ray, radius, mode, size); if((mode&RAY_ENTS) == RAY_ENTS) { float dent = disttooutsideent(o, ray, dist < 0 ? 1e16f : dist, mode, nullptr); if(dent < 1e15f && (dist < 0 || dent < dist)) dist = dent; } orient = hitorient; ent = hitentdist == dist ? hitent : -1; return dist; } float raycubepos(const vec &o, const vec &ray, vec &hitpos, float radius, int mode, int size) { hitpos = ray; float dist = raycube(o, ray, radius, mode, size); if(radius>0 && dist>=radius) dist = radius; hitpos.mul(dist).add(o); return dist; } bool raycubelos(const vec &o, const vec &dest, vec &hitpos) { vec ray(dest); ray.sub(o); float mag = ray.magnitude(); ray.mul(1/mag); float distance = raycubepos(o, ray, hitpos, mag, RAY_CLIPMAT|RAY_POLY); return distance >= mag; } float rayfloor(const vec &o, vec &floor, int mode, float radius) { if(o.z<=0) return -1; hitsurface = vec(0, 0, 1); float dist = raycube(o, vec(0, 0, -1), radius, mode); if(dist<0 || (radius>0 && dist>=radius)) return dist; floor = hitsurface; return dist; } ///////////////////////// entity collision /////////////////////////////////////////////// // info about collisions int collideinside; // whether an internal collision happened physent *collideplayer; // whether the collection hit a player vec collidewall; // just the normal vectors. const float STAIRHEIGHT = 4.1f; const float FLOORZ = 0.867f; const float SLOPEZ = 0.5f; const float WALLZ = 0.2f; extern const float JUMPVEL = 125.0f; extern const float GRAVITY = 200.0f; static bool ellipseboxcollide(physent *d, const vec &dir, const vec &o, const vec ¢er, float yaw, float xr, float yr, float hi, float lo) { float below = (o.z+center.z-lo) - (d->o.z+d->aboveeye), above = (d->o.z-d->eyeheight) - (o.z+center.z+hi); if(below>=0 || above>=0) return false; vec yo(d->o); yo.sub(o); yo.rotate_around_z(-yaw*RAD); yo.sub(center); float dx = std::clamp(yo.x, -xr, xr) - yo.x, dy = std::clamp(yo.y, -yr, yr) - yo.y, dist = sqrtf(dx*dx + dy*dy) - d->radius; if(dist < 0) { int sx = yo.x <= -xr ? -1 : (yo.x >= xr ? 1 : 0), sy = yo.y <= -yr ? -1 : (yo.y >= yr ? 1 : 0); if(dist > (yo.z < 0 ? below : above) && (sx || sy)) { vec ydir(dir); ydir.rotate_around_z(-yaw*RAD); if(sx*yo.x - xr > sy*yo.y - yr) { if(dir.iszero() || sx*ydir.x < -1e-6f) { collidewall = vec(sx, 0, 0); collidewall.rotate_around_z(yaw*RAD); return true; } } else if(dir.iszero() || sy*ydir.y < -1e-6f) { collidewall = vec(0, sy, 0); collidewall.rotate_around_z(yaw*RAD); return true; } } if(yo.z < 0) { if(dir.iszero() || (dir.z > 0 && (d->type!=ENT_PLAYER || below >= d->zmargin-(d->eyeheight+d->aboveeye)/4.0f))) { collidewall = vec(0, 0, -1); return true; } } else if(dir.iszero() || (dir.z < 0 && (d->type!=ENT_PLAYER || above >= d->zmargin-(d->eyeheight+d->aboveeye)/3.0f))) { collidewall = vec(0, 0, 1); return true; } collideinside++; } return false; } static bool ellipsecollide(physent *d, const vec &dir, const vec &o, const vec ¢er, float yaw, float xr, float yr, float hi, float lo) { float below = (o.z+center.z-lo) - (d->o.z+d->aboveeye), above = (d->o.z-d->eyeheight) - (o.z+center.z+hi); if(below>=0 || above>=0) return false; vec yo(center); yo.rotate_around_z(yaw*RAD); yo.add(o); float x = yo.x - d->o.x, y = yo.y - d->o.y; float angle = atan2f(y, x), dangle = angle-d->yaw*RAD, eangle = angle-yaw*RAD; float dx = d->xradius*cosf(dangle), dy = d->yradius*sinf(dangle); float ex = xr*cosf(eangle), ey = yr*sinf(eangle); float dist = sqrtf(x*x + y*y) - sqrtf(dx*dx + dy*dy) - sqrtf(ex*ex + ey*ey); if(dist < 0) { if(dist > (d->o.z < yo.z ? below : above) && (dir.iszero() || x*dir.x + y*dir.y > 0)) { collidewall = vec(-x, -y, 0).rescale(1); return true; } if(d->o.z < yo.z) { if(dir.iszero() || (dir.z > 0 && (d->type!=ENT_PLAYER || below >= d->zmargin-(d->eyeheight+d->aboveeye)/4.0f))) { collidewall = vec(0, 0, -1); return true; } } else if(dir.iszero() || (dir.z < 0 && (d->type!=ENT_PLAYER || above >= d->zmargin-(d->eyeheight+d->aboveeye)/3.0f))) { collidewall = vec(0, 0, 1); return true; } collideinside++; } return false; } #define DYNENTCACHESIZE 1024 static uint dynentframe = 0; static struct dynentcacheentry { int x, y; uint frame; vector dynents; } dynentcache[DYNENTCACHESIZE]; void cleardynentcache() { dynentframe++; if(!dynentframe || dynentframe == 1) loopi(DYNENTCACHESIZE) dynentcache[i].frame = 0; if(!dynentframe) dynentframe = 1; } VARF(dynentsize, 4, 7, 12, cleardynentcache()); #define DYNENTHASH(x, y) (((((x)^(y))<<5) + (((x)^(y))>>5)) & (DYNENTCACHESIZE - 1)) static const vector &checkdynentcache(int x, int y) { dynentcacheentry &dec = dynentcache[DYNENTHASH(x, y)]; if(dec.x == x && dec.y == y && dec.frame == dynentframe) return dec.dynents; dec.x = x; dec.y = y; dec.frame = dynentframe; dec.dynents.shrink(0); int numdyns = game::numdynents(), dsize = 1<state != CS_ALIVE || d->o.x+d->radius <= dx || d->o.x-d->radius >= dx+dsize || d->o.y+d->radius <= dy || d->o.y-d->radius >= dy+dsize) continue; dec.dynents.add(d); } return dec.dynents; } #define loopdynentcache(curx, cury, o, radius) \ for(int curx = max(int(o.x-radius), 0)>>dynentsize, endx = min(int(o.x+radius), worldsize-1)>>dynentsize; curx <= endx; curx++) \ for(int cury = max(int(o.y-radius), 0)>>dynentsize, endy = min(int(o.y+radius), worldsize-1)>>dynentsize; cury <= endy; cury++) void updatedynentcache(physent *d) { loopdynentcache(x, y, d->o, d->radius) { dynentcacheentry &dec = dynentcache[DYNENTHASH(x, y)]; if(dec.x != x || dec.y != y || dec.frame != dynentframe || dec.dynents.find(d) >= 0) continue; dec.dynents.add(d); } } bool overlapsdynent(const vec &o, float radius) { loopdynentcache(x, y, o, radius) { const vector &dynents = checkdynentcache(x, y); loopv(dynents) { physent *d = dynents[i]; if(o.dist(d->o)-d->radius < radius) return true; } } return false; } template static inline bool plcollide(physent *d, const vec &dir, physent *o) { E entvol(d); O obvol(o); vec cp; if(mpr::collide(entvol, obvol, nullptr, nullptr, &cp)) { vec wn = vec(cp).sub(obvol.center()); collidewall = obvol.contactface(wn, dir.iszero() ? vec(wn).neg() : dir); if(!collidewall.iszero()) return true; collideinside++; } return false; } static inline bool plcollide(physent *d, const vec &dir, physent *o) { switch(d->collidetype) { case COLLIDE_ELLIPSE: if(o->collidetype == COLLIDE_ELLIPSE) return ellipsecollide(d, dir, o->o, vec(0, 0, 0), o->yaw, o->xradius, o->yradius, o->aboveeye, o->eyeheight); else return ellipseboxcollide(d, dir, o->o, vec(0, 0, 0), o->yaw, o->xradius, o->yradius, o->aboveeye, o->eyeheight); case COLLIDE_OBB: if(o->collidetype == COLLIDE_ELLIPSE) return plcollide(d, dir, o); else return plcollide(d, dir, o); default: return false; } } static bool plcollide(physent *d, const vec &dir, bool insideplayercol) // collide with player { if(d->type==ENT_CAMERA || d->state!=CS_ALIVE) return false; int lastinside = collideinside; physent *insideplayer = nullptr; loopdynentcache(x, y, d->o, d->radius) { const vector &dynents = checkdynentcache(x, y); loopv(dynents) { physent *o = dynents[i]; if(o==d || d->o.reject(o->o, d->radius+o->radius)) continue; if(plcollide(d, dir, o)) { collideplayer = o; game::dynentcollide(d, o, collidewall); return true; } if(collideinside > lastinside) { lastinside = collideinside; insideplayer = o; } } } if(insideplayer && insideplayercol) { collideplayer = insideplayer; game::dynentcollide(d, insideplayer, vec(0, 0, 0)); return true; } return false; } void rotatebb(vec ¢er, vec &radius, int yaw, int pitch, int roll) { matrix3 orient; orient.identity(); if(yaw) orient.rotate_around_z(sincosmod360(yaw)); if(pitch) orient.rotate_around_x(sincosmod360(pitch)); if(roll) orient.rotate_around_y(sincosmod360(-roll)); center = orient.transform(center); radius = orient.abstransform(radius); } template static inline bool mmcollide(physent *d, const vec &dir, const extentity &e, const vec ¢er, const vec &radius, int yaw, int pitch, int roll) { E entvol(d); M mdlvol(e.o, center, radius, yaw, pitch, roll); vec cp; if(mpr::collide(entvol, mdlvol, nullptr, nullptr, &cp)) { vec wn = vec(cp).sub(mdlvol.center()); collidewall = mdlvol.contactface(wn, dir.iszero() ? vec(wn).neg() : dir); if(!collidewall.iszero()) return true; collideinside++; } return false; } template static bool fuzzycollidebox(physent *d, const vec &dir, float cutoff, const vec &o, const vec ¢er, const vec &radius, int yaw, int pitch, int roll) { mpr::ModelOBB mdlvol(o, center, radius, yaw, pitch, roll); vec bbradius = mdlvol.orient.abstransposedtransform(radius); if(fabs(d->o.x - mdlvol.o.x) > bbradius.x + d->radius || fabs(d->o.y - mdlvol.o.y) > bbradius.y + d->radius || d->o.z + d->aboveeye < mdlvol.o.z - bbradius.z || d->o.z - d->eyeheight > mdlvol.o.z + bbradius.z) return false; E entvol(d); collidewall = vec(0, 0, 0); float bestdist = -1e10f; loopi(6) { vec w; float dist; switch(i) { default: case 0: w = mdlvol.orient.rowx().neg(); dist = -radius.x; break; case 1: w = mdlvol.orient.rowx(); dist = -radius.x; break; case 2: w = mdlvol.orient.rowy().neg(); dist = -radius.y; break; case 3: w = mdlvol.orient.rowy(); dist = -radius.y; break; case 4: w = mdlvol.orient.rowz().neg(); dist = -radius.z; break; case 5: w = mdlvol.orient.rowz(); dist = -radius.z; break; } vec pw = entvol.supportpoint(vec(w).neg()); dist += w.dot(vec(pw).sub(mdlvol.o)); if(dist >= 0) return false; if(dist <= bestdist) continue; collidewall = vec(0, 0, 0); bestdist = dist; if(!dir.iszero()) { if(w.dot(dir) >= -cutoff*dir.magnitude()) continue; if(d->type==ENT_PLAYER && dist < (dir.z*w.z < 0 ? d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) : (dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0))) continue; } collidewall = w; } if(collidewall.iszero()) { collideinside++; return false; } return true; } template static bool fuzzycollideellipse(physent *d, const vec &dir, float cutoff, const vec &o, const vec ¢er, const vec &radius, int yaw, int pitch, int roll) { mpr::ModelEllipse mdlvol(o, center, radius, yaw, pitch, roll); vec bbradius = mdlvol.orient.abstransposedtransform(radius); if(fabs(d->o.x - mdlvol.o.x) > bbradius.x + d->radius || fabs(d->o.y - mdlvol.o.y) > bbradius.y + d->radius || d->o.z + d->aboveeye < mdlvol.o.z - bbradius.z || d->o.z - d->eyeheight > mdlvol.o.z + bbradius.z) return false; E entvol(d); collidewall = vec(0, 0, 0); float bestdist = -1e10f; loopi(3) { vec w; float dist; switch(i) { default: case 0: w = mdlvol.orient.rowz(); dist = -radius.z; break; case 1: w = mdlvol.orient.rowz().neg(); dist = -radius.z; break; case 2: { vec2 ln(mdlvol.orient.transform(entvol.center().sub(mdlvol.o))); float r = ln.magnitude(); if(r < 1e-6f) continue; vec2 lw = vec2(ln.x*radius.y, ln.y*radius.x).normalize(); w = mdlvol.orient.transposedtransform(lw); dist = -vec2(ln.x*radius.x, ln.y*radius.y).dot(lw)/r; break; } } vec pw = entvol.supportpoint(vec(w).neg()); dist += w.dot(vec(pw).sub(mdlvol.o)); if(dist >= 0) return false; if(dist <= bestdist) continue; collidewall = vec(0, 0, 0); bestdist = dist; if(!dir.iszero()) { if(w.dot(dir) >= -cutoff*dir.magnitude()) continue; if(d->type==ENT_PLAYER && dist < (dir.z*w.z < 0 ? d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) : (dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0))) continue; } collidewall = w; } if(collidewall.iszero()) { collideinside++; return false; } return true; } VAR(testtricol, 0, 0, 2); static bool mmcollide(physent *d, const vec &dir, float cutoff, octaentities &oc) // collide with a mapmodel { const vector &ents = entities::getents(); loopv(oc.mapmodels) { extentity &e = *ents[oc.mapmodels[i]]; if(e.flags&EF_NOCOLLIDE || !mapmodels.inrange(e.attr1)) continue; mapmodelinfo &mmi = mapmodels[e.attr1]; model *m = mmi.collide; if(!m) { if(!mmi.m && !loadmodel(nullptr, e.attr1)) continue; if(mmi.m->collidemodel) m = loadmodel(mmi.m->collidemodel); if(!m) m = mmi.m; mmi.collide = m; } int mcol = mmi.m->collide; if(!mcol) continue; vec center, radius; float rejectradius = m->collisionbox(center, radius), scale = e.attr5 > 0 ? e.attr5/100.0f : 1; if(d->o.reject(e.o, d->radius + rejectradius*scale)) continue; int yaw = e.attr2, pitch = e.attr3, roll = e.attr4; if(mcol == COLLIDE_TRI || testtricol) { if(!m->bih && !m->setBIH()) continue; switch(testtricol ? testtricol : d->collidetype) { case COLLIDE_ELLIPSE: if(m->bih->ellipsecollide(d, dir, cutoff, e.o, yaw, pitch, roll, scale)) return true; break; case COLLIDE_OBB: if(m->bih->boxcollide(d, dir, cutoff, e.o, yaw, pitch, roll, scale)) return true; break; default: continue; } } else { radius.mul(scale); switch(d->collidetype) { case COLLIDE_ELLIPSE: if(mcol == COLLIDE_ELLIPSE) { if(pitch || roll) { if(fuzzycollideellipse(d, dir, cutoff, e.o, center, radius, yaw, pitch, roll)) return true; } else if(ellipsecollide(d, dir, e.o, center, yaw, radius.x, radius.y, radius.z, radius.z)) return true; } else if(pitch || roll) { if(fuzzycollidebox(d, dir, cutoff, e.o, center, radius, yaw, pitch, roll)) return true; } else if(ellipseboxcollide(d, dir, e.o, center, yaw, radius.x, radius.y, radius.z, radius.z)) return true; break; case COLLIDE_OBB: if(mcol == COLLIDE_ELLIPSE) { if(mmcollide(d, dir, e, center, radius, yaw, pitch, roll)) return true; } else if(mmcollide(d, dir, e, center, radius, yaw, pitch, roll)) return true; break; default: continue; } } } return false; } template static bool fuzzycollidesolid(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with solid cube geometry { int crad = size/2; if(fabs(d->o.x - co.x - crad) > d->radius + crad || fabs(d->o.y - co.y - crad) > d->radius + crad || d->o.z + d->aboveeye < co.z || d->o.z - d->eyeheight > co.z + size) return false; collidewall = vec(0, 0, 0); float bestdist = -1e10f; int visible = !(c.visible&0x80) || d->type==ENT_PLAYER ? c.visible : 0xFF; #define CHECKSIDE(side, distval, dotval, margin, normal) if(visible&(1< 0) return false; \ if(dist <= bestdist) continue; \ if(!dir.iszero()) \ { \ if(dotval >= -cutoff*dir.magnitude()) continue; \ if(d->type==ENT_PLAYER && dotval < 0 && dist < margin) continue; \ } \ collidewall = normal; \ bestdist = dist; \ } while(0) CHECKSIDE(O_LEFT, co.x - (d->o.x + d->radius), -dir.x, -d->radius, vec(-1, 0, 0)); CHECKSIDE(O_RIGHT, d->o.x - d->radius - (co.x + size), dir.x, -d->radius, vec(1, 0, 0)); CHECKSIDE(O_BACK, co.y - (d->o.y + d->radius), -dir.y, -d->radius, vec(0, -1, 0)); CHECKSIDE(O_FRONT, d->o.y - d->radius - (co.y + size), dir.y, -d->radius, vec(0, 1, 0)); CHECKSIDE(O_BOTTOM, co.z - (d->o.z + d->aboveeye), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1)); CHECKSIDE(O_TOP, d->o.z - d->eyeheight - (co.z + size), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1)); if(collidewall.iszero()) { collideinside++; return false; } return true; } template static inline bool clampcollide(const clipplanes &p, const E &entvol, const plane &w, const vec &pw) { if(w.x && (w.y || w.z) && fabs(pw.x - p.o.x) > p.r.x) { vec c = entvol.center(); float fv = pw.x < p.o.x ? p.o.x-p.r.x : p.o.x+p.r.x, fdist = (w.x*fv + w.y*c.y + w.z*c.z + w.offset) / (w.y*w.y + w.z*w.z); vec fdir(fv - c.x, -w.y*fdist, -w.z*fdist); if((pw.y-c.y-fdir.y)*w.y + (pw.z-c.z-fdir.z)*w.z >= 0 && entvol.supportpoint(fdir).squaredist(c) < fdir.squaredlen()) return true; } if(w.y && (w.x || w.z) && fabs(pw.y - p.o.y) > p.r.y) { vec c = entvol.center(); float fv = pw.y < p.o.y ? p.o.y-p.r.y : p.o.y+p.r.y, fdist = (w.x*c.x + w.y*fv + w.z*c.z + w.offset) / (w.x*w.x + w.z*w.z); vec fdir(-w.x*fdist, fv - c.y, -w.z*fdist); if((pw.x-c.x-fdir.x)*w.x + (pw.z-c.z-fdir.z)*w.z >= 0 && entvol.supportpoint(fdir).squaredist(c) < fdir.squaredlen()) return true; } if(w.z && (w.x || w.y) && fabs(pw.z - p.o.z) > p.r.z) { vec c = entvol.center(); float fv = pw.z < p.o.z ? p.o.z-p.r.z : p.o.z+p.r.z, fdist = (w.x*c.x + w.y*c.y + w.z*fv + w.offset) / (w.x*w.x + w.y*w.y); vec fdir(-w.x*fdist, -w.y*fdist, fv - c.z); if((pw.x-c.x-fdir.x)*w.x + (pw.y-c.y-fdir.y)*w.y >= 0 && entvol.supportpoint(fdir).squaredist(c) < fdir.squaredlen()) return true; } return false; } template static bool fuzzycollideplanes(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with deformed cube geometry { clipplanes &p = getclipbounds(c, co, size, d); if(fabs(d->o.x - p.o.x) > p.r.x + d->radius || fabs(d->o.y - p.o.y) > p.r.y + d->radius || d->o.z + d->aboveeye < p.o.z - p.r.z || d->o.z - d->eyeheight > p.o.z + p.r.z) return false; collidewall = vec(0, 0, 0); float bestdist = -1e10f; int visible = forceclipplanes(c, co, size, p); CHECKSIDE(O_LEFT, p.o.x - p.r.x - (d->o.x + d->radius), -dir.x, -d->radius, vec(-1, 0, 0)); CHECKSIDE(O_RIGHT, d->o.x - d->radius - (p.o.x + p.r.x), dir.x, -d->radius, vec(1, 0, 0)); CHECKSIDE(O_BACK, p.o.y - p.r.y - (d->o.y + d->radius), -dir.y, -d->radius, vec(0, -1, 0)); CHECKSIDE(O_FRONT, d->o.y - d->radius - (p.o.y + p.r.y), dir.y, -d->radius, vec(0, 1, 0)); CHECKSIDE(O_BOTTOM, p.o.z - p.r.z - (d->o.z + d->aboveeye), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1)); CHECKSIDE(O_TOP, d->o.z - d->eyeheight - (p.o.z + p.r.z), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1)); E entvol(d); int bestplane = -1; loopi(p.size) { const plane &w = p.p[i]; vec pw = entvol.supportpoint(vec(w).neg()); float dist = w.dist(pw); if(dist >= 0) return false; if(dist <= bestdist) continue; bestplane = -1; bestdist = dist; if(!dir.iszero()) { if(w.dot(dir) >= -cutoff*dir.magnitude()) continue; if(d->type==ENT_PLAYER && dist < (dir.z*w.z < 0 ? d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) : (dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0))) continue; } if(clampcollide(p, entvol, w, pw)) continue; bestplane = i; } if(bestplane >= 0) collidewall = p.p[bestplane]; else if(collidewall.iszero()) { collideinside++; return false; } return true; } template static bool cubecollidesolid(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with solid cube geometry { int crad = size/2; if(fabs(d->o.x - co.x - crad) > d->radius + crad || fabs(d->o.y - co.y - crad) > d->radius + crad || d->o.z + d->aboveeye < co.z || d->o.z - d->eyeheight > co.z + size) return false; E entvol(d); bool collided = mpr::collide(mpr::SolidCube(co, size), entvol); if(!collided) return false; collidewall = vec(0, 0, 0); float bestdist = -1e10f; int visible = !(c.visible&0x80) || d->type==ENT_PLAYER ? c.visible : 0xFF; CHECKSIDE(O_LEFT, co.x - entvol.right(), -dir.x, -d->radius, vec(-1, 0, 0)); CHECKSIDE(O_RIGHT, entvol.left() - (co.x + size), dir.x, -d->radius, vec(1, 0, 0)); CHECKSIDE(O_BACK, co.y - entvol.front(), -dir.y, -d->radius, vec(0, -1, 0)); CHECKSIDE(O_FRONT, entvol.back() - (co.y + size), dir.y, -d->radius, vec(0, 1, 0)); CHECKSIDE(O_BOTTOM, co.z - entvol.top(), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1)); CHECKSIDE(O_TOP, entvol.bottom() - (co.z + size), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1)); if(collidewall.iszero()) { collideinside++; return false; } return true; } template static bool cubecollideplanes(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with deformed cube geometry { clipplanes &p = getclipbounds(c, co, size, d); if(fabs(d->o.x - p.o.x) > p.r.x + d->radius || fabs(d->o.y - p.o.y) > p.r.y + d->radius || d->o.z + d->aboveeye < p.o.z - p.r.z || d->o.z - d->eyeheight > p.o.z + p.r.z) return false; E entvol(d); bool collided = mpr::collide(mpr::CubePlanes(p), entvol); if(!collided) return false; collidewall = vec(0, 0, 0); float bestdist = -1e10f; int visible = forceclipplanes(c, co, size, p); CHECKSIDE(O_LEFT, p.o.x - p.r.x - entvol.right(), -dir.x, -d->radius, vec(-1, 0, 0)); CHECKSIDE(O_RIGHT, entvol.left() - (p.o.x + p.r.x), dir.x, -d->radius, vec(1, 0, 0)); CHECKSIDE(O_BACK, p.o.y - p.r.y - entvol.front(), -dir.y, -d->radius, vec(0, -1, 0)); CHECKSIDE(O_FRONT, entvol.back() - (p.o.y + p.r.y), dir.y, -d->radius, vec(0, 1, 0)); CHECKSIDE(O_BOTTOM, p.o.z - p.r.z - entvol.top(), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1)); CHECKSIDE(O_TOP, entvol.bottom() - (p.o.z + p.r.z), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1)); int bestplane = -1; loopi(p.size) { const plane &w = p.p[i]; vec pw = entvol.supportpoint(vec(w).neg()); float dist = w.dist(pw); if(dist <= bestdist) continue; bestplane = -1; bestdist = dist; if(!dir.iszero()) { if(w.dot(dir) >= -cutoff*dir.magnitude()) continue; if(d->type==ENT_PLAYER && dist < (dir.z*w.z < 0 ? d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) : (dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0))) continue; } if(clampcollide(p, entvol, w, pw)) continue; bestplane = i; } if(bestplane >= 0) collidewall = p.p[bestplane]; else if(collidewall.iszero()) { collideinside++; return false; } return true; } static inline bool cubecollide(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size, bool solid) { switch(d->collidetype) { case COLLIDE_OBB: if(isentirelysolid(c) || solid) return cubecollidesolid(d, dir, cutoff, c, co, size); else return cubecollideplanes(d, dir, cutoff, c, co, size); case COLLIDE_ELLIPSE: if(isentirelysolid(c) || solid) return fuzzycollidesolid(d, dir, cutoff, c, co, size); else return fuzzycollideplanes(d, dir, cutoff, c, co, size); default: return false; } } static inline bool octacollide(physent *d, const vec &dir, float cutoff, const ivec &bo, const ivec &bs, const cube *c, const ivec &cor, int size) // collide with octants { loopoctabox(cor, size, bo, bs) { if(c[i].ext && c[i].ext->ents) if(mmcollide(d, dir, cutoff, *c[i].ext->ents)) return true; ivec o(i, cor, size); if(c[i].children) { if(octacollide(d, dir, cutoff, bo, bs, c[i].children, o, size>>1)) return true; } else { bool solid = false; switch(c[i].material&MATF_CLIP) { case MAT_NOCLIP: continue; case MAT_CLIP: if(isclipped(c[i].material&MATF_VOLUME) || d->type==ENT_PLAYER) solid = true; break; } if(!solid && isempty(c[i])) continue; if(cubecollide(d, dir, cutoff, c[i], o, size, solid)) return true; } } return false; } static inline bool octacollide(physent *d, const vec &dir, float cutoff, const ivec &bo, const ivec &bs) { int diff = (bo.x^bs.x) | (bo.y^bs.y) | (bo.z^bs.z), scale = worldscale-1; if(diff&~((1<= uint(worldsize)) return octacollide(d, dir, cutoff, bo, bs, worldroot, ivec(0, 0, 0), worldsize>>1); const cube *c = &worldroot[octastep(bo.x, bo.y, bo.z, scale)]; if(c->ext && c->ext->ents && mmcollide(d, dir, cutoff, *c->ext->ents)) return true; scale--; while(c->children && !(diff&(1<children[octastep(bo.x, bo.y, bo.z, scale)]; if(c->ext && c->ext->ents && mmcollide(d, dir, cutoff, *c->ext->ents)) return true; scale--; } if(c->children) return octacollide(d, dir, cutoff, bo, bs, c->children, ivec(bo).mask(~((2<material&MATF_CLIP) { case MAT_NOCLIP: return false; case MAT_CLIP: if(isclipped(c->material&MATF_VOLUME) || d->type==ENT_PLAYER) solid = true; break; } if(!solid && isempty(*c)) return false; int csize = 2<o.x-d->radius), int(d->o.y-d->radius), int(d->o.z-d->eyeheight)), bs(int(d->o.x+d->radius), int(d->o.y+d->radius), int(d->o.z+d->aboveeye)); bo.sub(1); bs.add(1); // guard space for rounding errors return octacollide(d, dir, cutoff, bo, bs) || (playercol && plcollide(d, dir, insideplayercol)); // collide with world } static void recalcdir(physent *d, const vec &oldvel, vec &dir) { float speed = oldvel.magnitude(); if(speed > 1e-6f) { float step = dir.magnitude(); dir = d->vel; dir.add(d->falling); dir.mul(step/speed); } } static void slideagainst(physent *d, vec &dir, const vec &obstacle, bool foundfloor, bool slidecollide) { vec wall(obstacle); if(foundfloor ? wall.z > 0 : slidecollide) { wall.z = 0; if(!wall.iszero()) wall.normalize(); } vec oldvel(d->vel); oldvel.add(d->falling); d->vel.project(wall); d->falling.project(wall); recalcdir(d, oldvel, dir); } static void switchfloor(physent *d, vec &dir, const vec &floor) { if(floor.z >= FLOORZ) d->falling = vec(0, 0, 0); vec oldvel(d->vel); oldvel.add(d->falling); if(dir.dot(floor) >= 0) { if(d->physstate < PHYS_SLIDE || fabs(dir.dot(d->floor)) > 0.01f*dir.magnitude()) return; d->vel.projectxy(floor, 0.0f); } else d->vel.projectxy(floor); d->falling.project(floor); recalcdir(d, oldvel, dir); } static bool trystepup(physent *d, vec &dir, const vec &obstacle, float maxstep, const vec &floor) { vec old(d->o), stairdir = (obstacle.z >= 0 && obstacle.z < SLOPEZ ? vec(-obstacle.x, -obstacle.y, 0) : vec(dir.x, dir.y, 0)).rescale(1); bool cansmooth = true; /* check if there is space atop the stair to move to */ if(d->physstate != PHYS_STEP_UP) { vec checkdir = stairdir; checkdir.mul(0.1f); checkdir.z += maxstep + 0.1f; d->o.add(checkdir); if(collide(d)) { d->o = old; if(!collide(d, vec(0, 0, -1), SLOPEZ)) return false; cansmooth = false; } } if(cansmooth) { vec checkdir = stairdir; checkdir.z += 1; checkdir.mul(maxstep); d->o = old; d->o.add(checkdir); int scale = 2; if(collide(d, checkdir)) { if(!collide(d, vec(0, 0, -1), SLOPEZ)) { d->o = old; return false; } d->o.add(checkdir); if(collide(d, vec(0, 0, -1), SLOPEZ)) scale = 1; } if(scale != 1) { d->o = old; d->o.sub(checkdir.mul(vec(2, 2, 1))); if(!collide(d, vec(0, 0, -1), SLOPEZ)) scale = 1; } d->o = old; vec smoothdir(dir.x, dir.y, 0); float magxy = smoothdir.magnitude(); if(magxy > 1e-9f) { if(magxy > scale*dir.z) { smoothdir.mul(1/magxy); smoothdir.z = 1.0f/scale; smoothdir.mul(dir.magnitude()/smoothdir.magnitude()); } else smoothdir.z = dir.z; d->o.add(smoothdir); d->o.z += maxstep + 0.1f; if(!collide(d, smoothdir)) { d->o.z -= maxstep + 0.1f; if(d->physstate == PHYS_FALL || d->floor != floor) { d->timeinair = 0; d->floor = floor; switchfloor(d, dir, d->floor); } d->physstate = PHYS_STEP_UP; return true; } } } /* try stepping up */ d->o = old; d->o.z += dir.magnitude(); if(!collide(d, vec(0, 0, 1))) { if(d->physstate == PHYS_FALL || d->floor != floor) { d->timeinair = 0; d->floor = floor; switchfloor(d, dir, d->floor); } if(cansmooth) d->physstate = PHYS_STEP_UP; return true; } d->o = old; return false; } static bool trystepdown(physent *d, vec &dir, float step, float xy, float z, bool init = false) { vec stepdir(dir.x, dir.y, 0); stepdir.z = -stepdir.magnitude2()*z/xy; if(!stepdir.z) return false; stepdir.normalize(); vec old(d->o); d->o.add(vec(stepdir).mul(STAIRHEIGHT/fabs(stepdir.z))).z -= STAIRHEIGHT; d->zmargin = -STAIRHEIGHT; if(collide(d, vec(0, 0, -1), SLOPEZ)) { d->o = old; d->o.add(vec(stepdir).mul(step)); d->zmargin = 0; if(!collide(d, vec(0, 0, -1))) { vec stepfloor(stepdir); stepfloor.mul(-stepfloor.z).z += 1; stepfloor.normalize(); if(d->physstate >= PHYS_SLOPE && d->floor != stepfloor) { // prevent alternating step-down/step-up states if player would keep bumping into the same floor vec stepped(d->o); d->o.z -= 0.5f; d->zmargin = -0.5f; if(collide(d, stepdir) && collidewall == d->floor) { d->o = old; if(!init) { d->o.x += dir.x; d->o.y += dir.y; if(dir.z <= 0 || collide(d, dir)) d->o.z += dir.z; } d->zmargin = 0; d->physstate = PHYS_STEP_DOWN; d->timeinair = 0; return true; } d->o = init ? old : stepped; d->zmargin = 0; } else if(init) d->o = old; switchfloor(d, dir, stepfloor); d->floor = stepfloor; d->physstate = PHYS_STEP_DOWN; d->timeinair = 0; return true; } } d->o = old; d->zmargin = 0; return false; } static bool trystepdown(physent *d, vec &dir, bool init = false) { if((!d->move && !d->strafe) || !game::allowmove(d)) return false; vec old(d->o); d->o.z -= STAIRHEIGHT; d->zmargin = -STAIRHEIGHT; if(!collide(d, vec(0, 0, -1), SLOPEZ)) { d->o = old; d->zmargin = 0; return false; } d->o = old; d->zmargin = 0; float step = dir.magnitude(); #if 1 // weaker check, just enough to avoid hopping up slopes if(trystepdown(d, dir, step, 4, 1, init)) return true; #else if(trystepdown(d, dir, step, 2, 1, init)) return true; if(trystepdown(d, dir, step, 1, 1, init)) return true; if(trystepdown(d, dir, step, 1, 2, init)) return true; #endif return false; } static void falling(physent *d, vec &dir, const vec &floor) { if(floor.z > 0.0f && floor.z < SLOPEZ) { if(floor.z >= WALLZ) switchfloor(d, dir, floor); d->timeinair = 0; d->physstate = PHYS_SLIDE; d->floor = floor; } else if(d->physstate < PHYS_SLOPE || dir.dot(d->floor) > 0.01f*dir.magnitude() || (floor.z != 0.0f && floor.z != 1.0f) || !trystepdown(d, dir, true)) d->physstate = PHYS_FALL; } static void landing(physent *d, vec &dir, const vec &floor, bool collided) { #if 0 if(d->physstate == PHYS_FALL) { d->timeinair = 0; if(dir.z < 0.0f) dir.z = d->vel.z = 0.0f; } #endif switchfloor(d, dir, floor); d->timeinair = 0; if((d->physstate!=PHYS_STEP_UP && d->physstate!=PHYS_STEP_DOWN) || !collided) d->physstate = floor.z >= FLOORZ ? PHYS_FLOOR : PHYS_SLOPE; d->floor = floor; } static bool findfloor(physent *d, const vec &dir, bool collided, const vec &obstacle, bool &slide, vec &floor) { bool found = false; vec moved(d->o); d->o.z -= 0.1f; if(collide(d, vec(0, 0, -1), d->physstate == PHYS_SLOPE || d->physstate == PHYS_STEP_DOWN ? SLOPEZ : FLOORZ)) { if(d->physstate == PHYS_STEP_UP && d->floor != collidewall) { vec old(d->o), checkfloor(collidewall), checkdir = vec(dir).projectxydir(checkfloor).rescale(dir.magnitude()); d->o.add(checkdir); if(!collide(d, checkdir)) { floor = checkfloor; found = true; goto foundfloor; } d->o = old; } else { floor = collidewall; found = true; goto foundfloor; } } if(collided && obstacle.z >= SLOPEZ) { floor = obstacle; found = true; slide = false; } else if(d->physstate == PHYS_STEP_UP || d->physstate == PHYS_SLIDE) { if(collide(d, vec(0, 0, -1)) && collidewall.z > 0.0f) { floor = collidewall; if(floor.z >= SLOPEZ) found = true; } } else if(d->physstate >= PHYS_SLOPE && d->floor.z < 1.0f) { if(collide(d, vec(d->floor).neg(), 0.95f) || collide(d, vec(0, 0, -1))) { floor = collidewall; if(floor.z >= SLOPEZ && floor.z < 1.0f) found = true; } } foundfloor: if(collided && (!found || obstacle.z > floor.z)) { floor = obstacle; slide = !found && (floor.z < WALLZ || floor.z >= SLOPEZ); } d->o = moved; return found; } static bool move(physent *d, vec &dir) { vec old(d->o); bool collided = false, slidecollide = false; vec obstacle; d->o.add(dir); if(collide(d, dir)) { obstacle = collidewall; /* check to see if there is an obstacle that would prevent this one from being used as a floor (or ceiling bump) */ if(d->type==ENT_PLAYER && ((collidewall.z>=SLOPEZ && dir.z<0) || (collidewall.z<=-SLOPEZ && dir.z>0)) && (dir.x || dir.y) && collide(d, vec(dir.x, dir.y, 0))) { if(collidewall.dot(dir) >= 0) slidecollide = true; obstacle = collidewall; } d->o = old; d->o.z -= STAIRHEIGHT; d->zmargin = -STAIRHEIGHT; if(d->physstate == PHYS_SLOPE || d->physstate == PHYS_FLOOR || (collide(d, vec(0, 0, -1), SLOPEZ) && (d->physstate==PHYS_STEP_UP || d->physstate==PHYS_STEP_DOWN || collidewall.z>=FLOORZ))) { d->o = old; d->zmargin = 0; if(trystepup(d, dir, obstacle, STAIRHEIGHT, d->physstate == PHYS_SLOPE || d->physstate == PHYS_FLOOR ? d->floor : vec(collidewall))) return true; } else { d->o = old; d->zmargin = 0; } /* can't step over the obstacle, so just slide against it */ collided = true; } else if(d->physstate == PHYS_STEP_UP) { if(collide(d, vec(0, 0, -1), SLOPEZ)) { d->o = old; if(trystepup(d, dir, vec(0, 0, 1), STAIRHEIGHT, vec(collidewall))) return true; d->o.add(dir); } } else if(d->physstate == PHYS_STEP_DOWN && dir.dot(d->floor) <= 1e-6f) { vec moved(d->o); d->o = old; if(trystepdown(d, dir)) return true; d->o = moved; } vec floor(0, 0, 0); bool slide = collided, found = findfloor(d, dir, collided, obstacle, slide, floor); if(slide || (!collided && floor.z > 0 && floor.z < WALLZ)) { slideagainst(d, dir, slide ? obstacle : floor, found, slidecollide); d->blocked = true; } if(found) landing(d, dir, floor, collided); else falling(d, dir, floor); return !collided; } void crouchplayer(physent *pl, int moveres, bool local) { if(!curtime) return; float minheight = pl->maxheight * CROUCHHEIGHT, speed = (pl->maxheight - minheight) * curtime / float(CROUCHTIME); if(pl->crouching < 0) { if(pl->eyeheight > minheight) { float diff = min(pl->eyeheight - minheight, speed); pl->eyeheight -= diff; if(pl->physstate > PHYS_FALL) { pl->o.z -= diff; pl->newpos.z -= diff; } } } else if(pl->eyeheight < pl->maxheight) { float diff = min(pl->maxheight - pl->eyeheight, speed), step = diff/moveres; pl->eyeheight += diff; if(pl->physstate > PHYS_FALL) { pl->o.z += diff; pl->newpos.z += diff; } pl->crouching = 0; loopi(moveres) { if(!collide(pl, vec(0, 0, pl->physstate <= PHYS_FALL ? -1 : 1), 0, true)) break; pl->crouching = 1; pl->eyeheight -= step; if(pl->physstate > PHYS_FALL) { pl->o.z -= step; pl->newpos.z -= step; } } } } bool bounce(physent *d, float secs, float elasticity, float waterfric, float grav) { // make sure bouncers don't start inside geometry if(d->physstate!=PHYS_BOUNCE && collide(d, vec(0, 0, 0), 0, false)) return true; int mat = lookupmaterial(vec(d->o.x, d->o.y, d->o.z + (d->aboveeye - d->eyeheight)/2)); bool water = isliquid(mat); if(water) { d->vel.z -= grav*GRAVITY/16*secs; d->vel.mul(max(1.0f - secs/waterfric, 0.0f)); } else d->vel.z -= grav*GRAVITY*secs; vec old(d->o); loopi(2) { vec dir(d->vel); dir.mul(secs); d->o.add(dir); if(!collide(d, dir, 0, true, true)) { if(collideinside) { d->o = old; d->vel.mul(-elasticity); } break; } else if(collideplayer) break; d->o = old; //game::bounced(d, collidewall); float c = collidewall.dot(d->vel), k = 1.0f + (1.0f-elasticity)*c/d->vel.magnitude(); d->vel.mul(k); d->vel.sub(vec(collidewall).mul(elasticity*2.0f*c)); } if(d->physstate!=PHYS_BOUNCE) { // make sure bouncers don't start inside geometry if(d->o == old) return !collideplayer; d->physstate = PHYS_BOUNCE; } return collideplayer!=nullptr; } void avoidcollision(physent *d, const vec &dir, physent *obstacle, float space) { float rad = obstacle->radius+d->radius; vec bbmin(obstacle->o); bbmin.x -= rad; bbmin.y -= rad; bbmin.z -= obstacle->eyeheight+d->aboveeye; bbmin.sub(space); vec bbmax(obstacle->o); bbmax.x += rad; bbmax.y += rad; bbmax.z += obstacle->aboveeye+d->eyeheight; bbmax.add(space); loopi(3) if(d->o[i] <= bbmin[i] || d->o[i] >= bbmax[i]) return; float mindist = 1e16f; loopi(3) if(dir[i] != 0) { float dist = ((dir[i] > 0 ? bbmax[i] : bbmin[i]) - d->o[i]) / dir[i]; mindist = min(mindist, dist); } if(mindist >= 0.0f && mindist < 1e15f) d->o.add(vec(dir).mul(mindist)); } bool movecamera(physent *pl, const vec &dir, float dist, float stepdist) { int steps = (int)ceil(dist/stepdist); if(steps <= 0) return true; vec d(dir); d.mul(dist/steps); loopi(steps) { vec oldpos(pl->o); pl->o.add(d); if(collide(pl, vec(0, 0, 0), 0, false)) { pl->o = oldpos; return false; } } return true; } bool droptofloor(vec &o, float radius, float height) { static struct dropent : physent { dropent() { type = ENT_BOUNCE; vel = vec(0, 0, -1); } } d; d.o = o; if(!insideworld(d.o)) { if(d.o.z < worldsize) return false; d.o.z = worldsize - 1e-3f; if(!insideworld(d.o)) return false; } vec v(0.0001f, 0.0001f, -1); v.normalize(); if(raycube(d.o, v, worldsize) >= worldsize) return false; d.radius = d.xradius = d.yradius = radius; d.eyeheight = height; d.aboveeye = radius; if(!movecamera(&d, d.vel, worldsize, 1)) { o = d.o; return true; } return false; } static float dropheight(entity &e) { switch(e.type) { case ET_PARTICLES: case ET_MAPMODEL: return 0.0f; default: if(e.type >= ET_GAMESPECIFIC) return entities::dropheight(e); return 4.0f; } } void dropenttofloor(entity *e) { droptofloor(e->o, 1.0f, dropheight(*e)); } static void phystest() { static const char * const states[] = {"float", "fall", "slide", "slope", "floor", "step up", "step down", "bounce"}; printf ("PHYS(pl): %s, air %d, floor: (%f, %f, %f), vel: (%f, %f, %f), g: (%f, %f, %f)\n", states[player->physstate], player->timeinair, player->floor.x, player->floor.y, player->floor.z, player->vel.x, player->vel.y, player->vel.z, player->falling.x, player->falling.y, player->falling.z); printf ("PHYS(cam): %s, air %d, floor: (%f, %f, %f), vel: (%f, %f, %f), g: (%f, %f, %f)\n", states[camera1->physstate], camera1->timeinair, camera1->floor.x, camera1->floor.y, camera1->floor.z, camera1->vel.x, camera1->vel.y, camera1->vel.z, camera1->falling.x, camera1->falling.y, camera1->falling.z); } COMMAND(phystest, ""); void vecfromyawpitch(float yaw, float pitch, int move, int strafe, vec &m) { if(move) { m.x = move*-sinf(RAD*yaw); m.y = move*cosf(RAD*yaw); } else m.x = m.y = 0; if(pitch) { m.x *= cosf(RAD*pitch); m.y *= cosf(RAD*pitch); m.z = move*sinf(RAD*pitch); } else m.z = 0; if(strafe) { m.x += strafe*cosf(RAD*yaw); m.y += strafe*sinf(RAD*yaw); } } void vectoyawpitch(const vec &v, float &yaw, float &pitch) { if(v.iszero()) yaw = pitch = 0; else { yaw = -atan2(v.x, v.y)/RAD; pitch = asin(v.z/v.magnitude())/RAD; } } #define PHYSFRAMETIME 8 VARP(maxroll, 0, 0, 20); FVAR(straferoll, 0, 0.033f, 90); FVAR(faderoll, 0, 0.95f, 1); VAR(floatspeed, 1, 100, 10000); static void modifyvelocity(physent *pl, bool local, bool water, bool floating, int curtime) { bool allowmove = game::allowmove(pl); if(floating) { if(pl->jumping && allowmove) { pl->jumping = false; pl->vel.z = max(pl->vel.z, JUMPVEL); } } else if(pl->physstate >= PHYS_SLOPE || water) { if(water && !pl->inwater) pl->vel.div(8); if(pl->jumping && allowmove) { pl->jumping = false; pl->vel.z = max(pl->vel.z, JUMPVEL); // physics impulse upwards if(water) { pl->vel.x /= 8.0f; pl->vel.y /= 8.0f; } // dampen velocity change even harder, gives correct water feel game::physicstrigger(pl, local, 1, 0); } } if(!floating && pl->physstate == PHYS_FALL) pl->timeinair = min(pl->timeinair + curtime, 1000); vec m(0.0f, 0.0f, 0.0f); if((pl->move || pl->strafe) && allowmove) { vecfromyawpitch(pl->yaw, floating || water || pl->type==ENT_CAMERA ? pl->pitch : 0, pl->move, pl->strafe, m); if(!floating && pl->physstate >= PHYS_SLOPE) { /* move up or down slopes in air * but only move up slopes in water */ float dz = -(m.x*pl->floor.x + m.y*pl->floor.y)/pl->floor.z; m.z = water ? max(m.z, dz) : dz; } m.normalize(); } vec d(m); d.mul(pl->maxspeed); if(pl->type==ENT_PLAYER) { if(floating) { if(pl==player) d.mul(floatspeed/100.0f); } else if(pl->crouching) d.mul(0.4f); } float fric = water && !floating ? 20.0f : (pl->physstate >= PHYS_SLOPE || floating ? 6.0f : 30.0f); pl->vel.lerp(d, pl->vel, pow(1 - 1/fric, curtime/20.0f)); // old fps friction // float friction = water && !floating ? 20.0f : (pl->physstate >= PHYS_SLOPE || floating ? 6.0f : 30.0f); // float fpsfric = min(curtime/(20.0f*friction), 1.0f); // pl->vel.lerp(pl->vel, d, fpsfric); } static void modifygravity(physent *pl, bool water, int curtime) { float secs = curtime/1000.0f; vec g(0, 0, 0); if(pl->physstate == PHYS_FALL) g.z -= GRAVITY*secs; else if(pl->floor.z > 0 && pl->floor.z < FLOORZ) { g.z = -1; g.project(pl->floor); g.normalize(); g.mul(GRAVITY*secs); } if(!water || !game::allowmove(pl) || (!pl->move && !pl->strafe)) pl->falling.add(g); if(water || pl->physstate >= PHYS_SLOPE) { float fric = water ? 2.0f : 6.0f, c = water ? 1.0f : std::clamp((pl->floor.z - SLOPEZ)/(FLOORZ-SLOPEZ), 0.0f, 1.0f); pl->falling.mul(pow(1 - c/fric, curtime/20.0f)); // old fps friction // float friction = water ? 2.0f : 6.0f, // fpsfric = friction/curtime*20.0f, // c = water ? 1.0f : std::clamp((pl->floor.z - SLOPEZ)/(FLOORZ-SLOPEZ), 0.0f, 1.0f); // pl->falling.mul(1 - c/fpsfric); } } // main physics routine, moves a player/monster for a curtime step // moveres indicated the physics precision (which is lower for monsters and multiplayer prediction) // local is false for multiplayer prediction bool moveplayer(physent *pl, int moveres, bool local, int curtime) { int material = lookupmaterial(vec(pl->o.x, pl->o.y, pl->o.z + (3*pl->aboveeye - pl->eyeheight)/4)); bool water = isliquid(material&MATF_VOLUME); bool floating = pl->type==ENT_PLAYER && (pl->state==CS_EDITING || pl->state==CS_SPECTATOR); float secs = curtime/1000.f; // apply gravity if(!floating) modifygravity(pl, water, curtime); // apply any player generated changes in velocity modifyvelocity(pl, local, water, floating, curtime); vec d(pl->vel); if(!floating && water) d.mul(0.5f); d.add(pl->falling); d.mul(secs); pl->blocked = false; if(floating) // just apply velocity { if(pl->physstate != PHYS_FLOAT) { pl->physstate = PHYS_FLOAT; pl->timeinair = 0; pl->falling = vec(0, 0, 0); } pl->o.add(d); } else // apply velocity with collision { const float f = 1.0f/moveres; const int timeinair = pl->timeinair; int collisions = 0; d.mul(f); loopi(moveres) if(!move(pl, d) && ++collisions<5) i--; // discrete steps collision detection & sliding if(timeinair > 800 && !pl->timeinair && !water) // if we land after long time must have been a high jump, make thud sound { game::physicstrigger(pl, local, -1, 0); } } if(pl->state==CS_ALIVE) updatedynentcache(pl); // automatically apply smooth roll when strafing if(pl->strafe && maxroll) pl->roll = std::clamp(pl->roll - pow(std::clamp(1.0f + pl->strafe*pl->roll/maxroll, 0.0f, 1.0f), 0.33f)*pl->strafe*curtime*straferoll, float(-maxroll), float(maxroll)); else pl->roll *= curtime == PHYSFRAMETIME ? faderoll : pow(faderoll, curtime/float(PHYSFRAMETIME)); // play sounds on water transitions if(pl->inwater && !water) { material = lookupmaterial(vec(pl->o.x, pl->o.y, pl->o.z + (pl->aboveeye - pl->eyeheight)/2)); water = isliquid(material&MATF_VOLUME); } if(!pl->inwater && water) game::physicstrigger(pl, local, 0, -1, material&MATF_VOLUME); else if(pl->inwater && !water) game::physicstrigger(pl, local, 0, 1, pl->inwater); pl->inwater = water ? material&MATF_VOLUME : MAT_AIR; //if(pl->state==CS_ALIVE && (pl->o.z < 0 || material&MAT_DEATH)) game::suicide(pl); return true; } static int physsteps = 0, physframetime = PHYSFRAMETIME, lastphysframe = 0; void physicsframe() // optimally schedule physics frames inside the graphics frames { int diff = lastmillis - lastphysframe; if(diff <= 0) physsteps = 0; else { physframetime = std::clamp(game::scaletime(PHYSFRAMETIME)/100, 1, PHYSFRAMETIME); physsteps = (diff + physframetime - 1)/physframetime; lastphysframe += physsteps * physframetime; } cleardynentcache(); } VAR(physinterp, 0, 1, 1); static void interppos(physent *pl) { pl->o = pl->newpos; int diff = lastphysframe - lastmillis; if(diff <= 0 || !physinterp) return; vec deltapos(pl->deltapos); deltapos.mul(min(diff, physframetime)/float(physframetime)); pl->o.add(deltapos); } void moveplayer(physent *pl, int moveres, bool local) { if(physsteps <= 0) { if(local) interppos(pl); return; } if(local) pl->o = pl->newpos; loopi(physsteps-1) moveplayer(pl, moveres, local, physframetime); if(local) pl->deltapos = pl->o; moveplayer(pl, moveres, local, physframetime); if(local) { pl->newpos = pl->o; pl->deltapos.sub(pl->newpos); interppos(pl); } } bool bounce(physent *d, float elasticity, float waterfric, float grav) { if(physsteps <= 0) { interppos(d); return false; } d->o = d->newpos; bool hitplayer = false; loopi(physsteps-1) { if(bounce(d, physframetime/1000.0f, elasticity, waterfric, grav)) hitplayer = true; } d->deltapos = d->o; if(bounce(d, physframetime/1000.0f, elasticity, waterfric, grav)) hitplayer = true; d->newpos = d->o; d->deltapos.sub(d->newpos); interppos(d); return hitplayer; } void updatephysstate(physent *d) { if(d->physstate == PHYS_FALL) return; d->timeinair = 0; vec old(d->o); /* Attempt to reconstruct the floor state. * May be inaccurate since movement collisions are not considered. * If good floor is not found, just keep the old floor and hope it's correct enough. */ switch(d->physstate) { case PHYS_SLOPE: case PHYS_FLOOR: case PHYS_STEP_DOWN: d->o.z -= 0.15f; if(collide(d, vec(0, 0, -1), d->physstate == PHYS_SLOPE || d->physstate == PHYS_STEP_DOWN ? SLOPEZ : FLOORZ)) d->floor = collidewall; break; case PHYS_STEP_UP: d->o.z -= STAIRHEIGHT+0.15f; if(collide(d, vec(0, 0, -1), SLOPEZ)) d->floor = collidewall; break; case PHYS_SLIDE: d->o.z -= 0.15f; if(collide(d, vec(0, 0, -1)) && collidewall.z < SLOPEZ) d->floor = collidewall; break; } if(d->physstate > PHYS_FALL && d->floor.z <= 0) d->floor = vec(0, 0, 1); d->o = old; } #define dir(name,v,d,s,os) ICOMMAND(name, "D", (int *down), { player->s = *down!=0; player->v = player->s ? d : (player->os ? -(d) : 0); }); dir(backward, move, -1, k_down, k_up); dir(forward, move, 1, k_up, k_down); dir(left, strafe, 1, k_left, k_right); dir(right, strafe, -1, k_right, k_left); ICOMMAND(jump, "D", (int *down), { if(!*down || game::canjump()) player->jumping = *down!=0; }); ICOMMAND(crouch, "D", (int *down), { if(!*down) player->crouching = abs(player->crouching); else if(game::cancrouch()) player->crouching = -1; }); bool entinmap(dynent *d, bool avoidplayers) // brute force but effective way to find a free spawn spot in the map { d->o.z += d->eyeheight; // pos specified is at feet vec orig = d->o; loopi(100) // try max 100 times { if(i) { d->o = orig; d->o.x += (rnd(21)-10)*i/5; // increasing distance d->o.y += (rnd(21)-10)*i/5; d->o.z += (rnd(21)-10)*i/5; } if(!collide(d) && !collideinside) { if(collideplayer) { if(!avoidplayers) continue; d->o = orig; d->resetinterp(); return false; } d->resetinterp(); return true; } } // leave ent at original pos, possibly stuck d->o = orig; d->resetinterp(); conoutf(CON_WARN, "can't find entity spawn spot! (%.1f, %.1f, %.1f)", d->o.x, d->o.y, d->o.z); return false; }