// Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) // Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) // Copyright (C) 2013 Belen Masia (bmasia@unizar.es) // Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) // Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) // // Permission is hereby granted, free of charge, to any person obtaining a copy // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies // of the Software, and to permit persons to whom the Software is furnished to // do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. As clarification, there // is no requirement that the copyright notice and permission be included in // binary distributions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // _______ ___ ___ ___ ___ // / || \/ | / \ / \ // | (---- | \ / | / ^ \ / ^ \ // \ \ | |\/| | / /_\ \ / /_\ \ // ----) | | | | | / _____ \ / _____ \ // |_______/ |__| |__| /__/ \__\ /__/ \__\ // // E N H A N C E D // S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G // // http://www.iryoku.com/smaa/ smaadefs = [ #define SMAA_PRESET @smaapreset #if SMAA_PRESET == 1 #define SMAA_THRESHOLD 0.1 #define SMAA_MAX_SEARCH_STEPS 8 #define SMAA_MAX_SEARCH_STEPS_DIAG 0 #define SMAA_CORNER_ROUNDING 100 #elif SMAA_PRESET == 2 #define SMAA_THRESHOLD 0.1 #define SMAA_MAX_SEARCH_STEPS 16 #define SMAA_MAX_SEARCH_STEPS_DIAG 8 #define SMAA_CORNER_ROUNDING 25 #elif SMAA_PRESET == 3 #define SMAA_THRESHOLD 0.05 #define SMAA_MAX_SEARCH_STEPS 32 #define SMAA_MAX_SEARCH_STEPS_DIAG 16 #define SMAA_CORNER_ROUNDING 25 #else #define SMAA_THRESHOLD 0.15 #define SMAA_MAX_SEARCH_STEPS 4 #define SMAA_MAX_SEARCH_STEPS_DIAG 0 #define SMAA_CORNER_ROUNDING 100 #endif #define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0 #define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0) #define SMAA_AREATEX_MAX_DISTANCE 16 #define SMAA_AREATEX_MAX_DISTANCE_DIAG 20 #define SMAA_AREATEX_WIDTH 160 #define SMAA_AREATEX_HEIGHT 560 #define SMAA_SEARCHTEX_WIDTH 66 #define SMAA_SEARCHTEX_HEIGHT 33 #define SMAA_AREATEX_SUBSAMPLES 80 @(? (smaaopt "g") [ #define SMAA_LUMA(color) (color.g) ] [ #define SMAA_LUMA(color) (color.a) ]) @(? (smaaopt "a") [ #define SMAA_AREA(vals) (vals.ra) ] [ #define SMAA_AREA(vals) (vals.rg) ]) @(? (|| (smaaopt "t") [smaaopt "s"]) [ #define SMAA_AREA_OFFSET(texcoord, offset) texcoord.y += offset*float(SMAA_AREATEX_SUBSAMPLES) ] [ #define SMAA_AREA_OFFSET(texcoord, offset) ]) ] shader 0 [SMAALumaEdgeDetection@smaapreset@smaaopts] [ in vec4 vvertex; @(screentexcoord 0) out vec2 texcoord0; void main(void) { gl_Position = vvertex; texcoord0 = vtexcoord0; } ] [ @smaadefs uniform sampler2DRect tex0; in vec2 texcoord0; layout(location = 0) out vec4 fragcolor; void main(void) { // Calculate lumas: float L = SMAA_LUMA(textureRect(tex0, texcoord0)); float Lleft = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(-1, 0))); float Ltop = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(0, -1))); // We do the usual threshold: vec2 delta = abs(L - vec2(Lleft, Ltop)); vec2 edges = step(SMAA_THRESHOLD, delta); // Then discard if there is no edge: @(? (smaaopt "d") [ if (edges.x + edges.y == 0.0) discard; else ] [ if (edges.x + edges.y > 0.0) ]) { // Calculate right and bottom deltas: float Lright = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(1, 0))); float Lbottom = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(0, 1))); // Calculate the maximum delta in the direct neighborhood: vec2 maxDelta = max(delta, abs(L - vec2(Lright, Lbottom))); // Calculate left-left and top-top deltas: float Lleftleft = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(-2, 0))); float Ltoptop = SMAA_LUMA(textureRectOffset(tex0, texcoord0, ivec2(0, -2))); // Calculate the final maximum delta: maxDelta = max(maxDelta, abs(vec2(Lleft, Ltop) - vec2(Lleftleft, Ltoptop))); /** * Each edge with a delta in luma of less than 50% of the maximum luma * surrounding this pixel is discarded. This allows to eliminate spurious * crossing edges, and is based on the fact that, if there is too much * contrast in a direction, that will hide contrast in the other * neighbors. * This is done after the discard intentionally as this situation doesn't * happen too frequently (but it's important to do as it prevents some * edges from going undetected). */ edges *= step(max(maxDelta.x, maxDelta.y), SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta); } fragcolor = vec4(edges, 0.0, 0.0); } ] shader 0 [SMAAColorEdgeDetection@smaapreset@smaaopts] [ in vec4 vvertex; @(screentexcoord 0) out vec2 texcoord0; void main(void) { gl_Position = vvertex; texcoord0 = vtexcoord0; } ] [ @smaadefs uniform sampler2DRect tex0; in vec2 texcoord0; layout(location = 0) out vec4 fragcolor; void main(void) { // Calculate color deltas: vec3 C = textureRect(tex0, texcoord0).rgb; vec3 Cleft = abs(C - textureRectOffset(tex0, texcoord0, ivec2(-1, 0)).rgb); vec3 Ctop = abs(C - textureRectOffset(tex0, texcoord0, ivec2(0, -1)).rgb); vec2 delta; delta.x = max(max(Cleft.r, Cleft.g), Cleft.b); delta.y = max(max(Ctop.r, Ctop.g), Ctop.b); // We do the usual threshold: vec2 edges = step(SMAA_THRESHOLD, delta); // Then discard if there is no edge: @(? (smaaopt "d") [ if (edges.x + edges.y == 0.0) discard; else ] [ if (edges.x + edges.y > 0.0) ]) { // Calculate right and bottom deltas: vec3 Cright = abs(C - textureRectOffset(tex0, texcoord0, ivec2(1, 0)).rgb); vec3 Cbottom = abs(C - textureRectOffset(tex0, texcoord0, ivec2(0, 1)).rgb); // Calculate left-left and top-top deltas: vec3 Cleftleft = abs(C - textureRectOffset(tex0, texcoord0, ivec2(-2, 0)).rgb); vec3 Ctoptop = abs(C - textureRectOffset(tex0, texcoord0, ivec2(0, -2)).rgb); // Calculate the maximum delta in the direct neighborhood: vec3 t = max(max(Cright, Cbottom), max(Cleftleft, Ctoptop)); // Calculate the final maximum delta: float maxDelta = max(max(delta.x, delta.y), max(max(t.r, t.g), t.b)); // Local contrast adaptation in action: edges *= step(maxDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta); } fragcolor = vec4(edges, 0.0, 0.0); } ] shader 0 [SMAABlendingWeightCalculation@smaapreset@smaaopts] [ @smaadefs in vec4 vvertex; @(screentexcoord 0) out vec2 texcoord0, texcoord1, texcoord2, texcoord3, texcoord4, texcoord5; void main(void) { gl_Position = vvertex; texcoord0 = vtexcoord0; // We will use these offsets for the searches later on (see PSEUDO_GATHER4): texcoord1 = vtexcoord0 + vec2( -0.25, -0.125); texcoord2 = vtexcoord0 + vec2( 1.25, -0.125); texcoord3 = vtexcoord0 + vec2(-0.125, -0.25); texcoord4 = vtexcoord0 + vec2(-0.125, 1.25); texcoord5 = vtexcoord0 + vec2( 0.25, 0.0); } ] [ @smaadefs in vec2 texcoord0, texcoord1, texcoord2, texcoord3, texcoord4, texcoord5; uniform sampler2DRect tex0, tex1, tex2; uniform vec4 subsamples; layout(location = 0) out vec4 fragcolor; #if __VERSION__ >= 130 || defined(GL_EXT_gpu_shader4) #define SMAARound(e) round(e) #else #define SMAARound(e) floor(e + 0.5) #endif //----------------------------------------------------------------------------- // Diagonal Search Functions #if SMAA_MAX_SEARCH_STEPS_DIAG > 0 /** * Allows to decode two binary values from a bilinear-filtered access. */ #define SMAADecodeDiagBilinearAccess(e) (e * abs(6.0 * e - 5.0)) /** * These functions allows to perform diagonal pattern searches. */ float SMAASearchDiagRightUp(void) { vec2 e = textureRectOffset(tex0, texcoord0, ivec2(1, -1)).rg; vec2 texcoord = texcoord0 + vec2(1.0, -1.0); for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) { if (e.x + e.y < 1.5) break; texcoord += vec2(1.0, -1.0); e = textureRect(tex0, texcoord).rg; } return (texcoord.x - texcoord0.x) - 1.0; } float SMAASearchDiagLeftDown(void) { vec2 e = textureRectOffset(tex0, texcoord0, ivec2(-1, 1)).rg; vec2 texcoord = texcoord0 + vec2(-1.0, 1.0); for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) { if (e.x + e.y < 1.5) break; texcoord += vec2(-1.0, 1.0); e = textureRect(tex0, texcoord).rg; } return (texcoord0.x - texcoord.x) - 1.0 + SMAARound(e.y); } float SMAASearchDiagLeftUp(void) { vec2 e = textureRectOffset(tex0, texcoord5, ivec2(-1, -1)).rg; vec2 texcoord = texcoord5 + vec2(-1.0, -1.0); for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) { if (SMAADecodeDiagBilinearAccess(e.x) + e.y < 1.5) break; texcoord += vec2(-1.0, -1.0); e = textureRect(tex0, texcoord).rg; } return (texcoord5.x - texcoord.x) - 1.0; } float SMAASearchDiagRightDown(void) { vec2 e = textureRectOffset(tex0, texcoord5, ivec2(1, 1)).rg; vec2 texcoord = texcoord5 + vec2(1.0, 1.0); for (int i = 1; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) { if (SMAADecodeDiagBilinearAccess(e.x) + e.y < 1.5) break; texcoord += vec2(1.0, 1.0); e = textureRect(tex0, texcoord).rg; } return (texcoord.x - texcoord5.x) - 1.0 + SMAARound(e.y); } /** * Similar to SMAAArea, this calculates the area corresponding to a certain * diagonal distance and crossing edges 'e'. */ vec2 SMAAAreaDiag(vec2 dist, vec2 e, float offset) { vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist; // We do a scale and bias for mapping to texel space: texcoord = texcoord + 0.5; // Diagonal areas are on the second half of the texture: texcoord.x += 0.5*float(SMAA_AREATEX_WIDTH); // Move to proper place, according to the subpixel offset: SMAA_AREA_OFFSET(texcoord, offset); return SMAA_AREA(textureRect(tex1, texcoord)); } /** * This searches for diagonal patterns and returns the corresponding weights. */ vec2 SMAACalculateDiagWeights(vec2 e) { vec2 weights = vec2(0.0); vec2 d; d.x = e.r > 0.5 ? SMAASearchDiagLeftDown() : 0.0; d.y = SMAASearchDiagRightUp(); if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 vec4 coords = vec4(0.25 - d.x, d.x, d.y, -0.25 - d.y) + texcoord0.xyxy; vec4 c; c.xy = textureRectOffset(tex0, coords.xy, ivec2(-1, 0)).rg; c.zw = textureRectOffset(tex0, coords.zw, ivec2( 1, 0)).rg; c.xz = SMAADecodeDiagBilinearAccess(c.xz); c = SMAARound(c); vec2 e = 2.0 * c.yw + c.xz; e *= step(d, vec2(float(SMAA_MAX_SEARCH_STEPS_DIAG) - 0.5)); weights += SMAAAreaDiag(d, e, subsamples.z); } d.x = SMAASearchDiagLeftUp(); d.y = SMAADecodeDiagBilinearAccess(e.r) > 0.5 ? SMAASearchDiagRightDown() : 0.0; if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 vec4 coords = vec4(-d.xx, d.yy) + texcoord0.xyxy; vec4 c; c.x = textureRectOffset(tex0, coords.xy, ivec2(-1, 0)).g; c.y = textureRectOffset(tex0, coords.xy, ivec2( 0, -1)).r; c.zw = textureRectOffset(tex0, coords.zw, ivec2( 1, 0)).gr; vec2 e = 2.0 * c.xz + c.yw; e *= step(d, vec2(float(SMAA_MAX_SEARCH_STEPS_DIAG) - 0.5)); weights += SMAAAreaDiag(d, e, subsamples.w).gr; } return weights; } #endif //----------------------------------------------------------------------------- // Horizontal/Vertical Search Functions /** * This allows to determine how much length should we add in the last step * of the searches. It takes the bilinearly interpolated edge (see * PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and * crossing edges are active. */ float SMAASearchLength(vec2 e, float bias, float scale) { e.r = bias + e.r * scale; return 255.0 * textureRect(tex2, e*vec2(float(SMAA_SEARCHTEX_WIDTH), float(SMAA_SEARCHTEX_HEIGHT))).r; } /** * Horizontal/vertical search functions for the 2nd pass. */ float SMAASearchXLeft(void) { /** * PSEUDO_GATHER4 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to * sample between edge, thus fetching four edges in a row. * Sampling with different offsets in each direction allows to disambiguate * which edges are active from the four fetched ones. */ vec2 e = textureRect(tex0, texcoord1).rg; vec2 texcoord = texcoord1; for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) { if(e.g <= 0.8281 || e.r > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line? texcoord.x -= 2.0; e = textureRect(tex0, texcoord).rg; } // We correct the previous (-0.25, -0.125) offset we applied: // The searches are bias by 1, so adjust the coords accordingly: // Disambiguate the length added by the last step: return texcoord.x + (0.25 + 1.0) - SMAASearchLength(e, 0.0, 0.5); } float SMAASearchXRight(void) { vec2 e = textureRect(tex0, texcoord2).rg; vec2 texcoord = texcoord2; for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) { if(e.g <= 0.8281 || e.r > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line? texcoord.x += 2.0; e = textureRect(tex0, texcoord).rg; } return texcoord.x - (0.25 + 1.0) + SMAASearchLength(e, 0.5, 0.5); } float SMAASearchYUp(void) { vec2 e = textureRect(tex0, texcoord3).rg; vec2 texcoord = texcoord3; for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) { if(e.r <= 0.8281 || e.g > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line? texcoord.y -= 2.0; e = textureRect(tex0, texcoord).rg; } return texcoord.y + (0.25 + 1.0) - SMAASearchLength(e.gr, 0.0, 0.5); } float SMAASearchYDown(void) { vec2 e = textureRect(tex0, texcoord4).rg; vec2 texcoord = texcoord4; for(int i = 1; i < SMAA_MAX_SEARCH_STEPS; i++) { if(e.r <= 0.8281 || e.g > 0.0) break; // Is there some edge not activated or a crossing edge that breaks the line? texcoord.y += 2.0; e = textureRect(tex0, texcoord).rg; } return texcoord.y - (0.25 + 1.0) + SMAASearchLength(e.gr, 0.5, 0.5); } /** * Ok, we have the distance and both crossing edges. So, what are the areas * at each side of current edge? */ vec2 SMAAArea(vec2 dist, vec2 e, float offset) { // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: // Rounding prevents precision errors of bilinear filtering: vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE) * SMAARound(4.0 * e) + sqrt(dist); // We do a scale and bias for mapping to texel space: texcoord = texcoord + 0.5; // Move to proper place, according to the subpixel offset: SMAA_AREA_OFFSET(texcoord, offset); return SMAA_AREA(textureRect(tex1, texcoord)); } //----------------------------------------------------------------------------- // Corner Detection Functions #if SMAA_CORNER_ROUNDING < 100 vec2 SMAADetectHorizontalCornerPattern(vec3 coords, vec2 d) { vec2 e; if(d.x >= d.y) coords.x = coords.z + 1.0 - 0.5*step(d.x, d.y); e.r = textureRectOffset(tex0, coords.xy, ivec2(0, 1)).r; e.g = textureRectOffset(tex0, coords.xy, ivec2(0, -2)).r; return clamp(1.0 - (1.0 - SMAA_CORNER_ROUNDING_NORM) * e, 0.0, 1.0); } vec2 SMAADetectVerticalCornerPattern(vec3 coords, vec2 d) { vec2 e; if(d.x >= d.y) coords.y = coords.z + 1.0 - 0.5*step(d.x, d.y); e.r = textureRectOffset(tex0, coords.xy, ivec2( 1, 0)).g; e.g = textureRectOffset(tex0, coords.xy, ivec2(-2, 0)).g; return clamp(1.0 - (1.0 - SMAA_CORNER_ROUNDING_NORM) * e, 0.0, 1.0); } #endif //----------------------------------------------------------------------------- // Blending Weight Calculation Pixel Shader (Second Pass) void main(void) { vec4 weights = vec4(0.0); vec2 e = textureRect(tex0, texcoord5).rg; if (e.g > 0.5) { // Edge at north #if SMAA_MAX_SEARCH_STEPS_DIAG > 0 // Diagonals have both north and west edges, so searching for them in // one of the boundaries is enough. weights.rg = SMAACalculateDiagWeights(e); // We give priority to diagonals, so if we find a diagonal we skip // horizontal/vertical processing. if (weights.r + weights.g == 0.0) { #endif // Find the distance to the left: vec3 coords; coords.x = SMAASearchXLeft(); coords.y = texcoord3.y; // texcoord3.y = texcoord0.y - 0.25 (CROSSING_OFFSET) // Find the distance to the right: coords.z = SMAASearchXRight(); // We want the distances to be in pixel units (doing this here allow to // better interleave arithmetic and memory accesses): vec2 d = SMAARound(abs(coords.xz - texcoord0.x)); // Now fetch the left crossing edges, two at a time using bilinear // filtering. Sampling at -0.25 (see CROSSING_OFFSET) enables to // discern what value each edge has: vec2 e; e.x = textureRect(tex0, coords.xy).r; // Fetch the right crossing edges: e.y = textureRectOffset(tex0, coords.zy, ivec2(1, 0)).r; // Ok, we know how this pattern looks like, now it is time for getting // the actual area: weights.rg = SMAAArea(d, e, subsamples.y); #if SMAA_CORNER_ROUNDING < 100 // Fix corners: coords.y = texcoord0.y; weights.rg *= SMAADetectHorizontalCornerPattern(coords, d); #endif #if SMAA_MAX_SEARCH_STEPS_DIAG > 0 } else e.r = 0.0; // Skip vertical processing. #endif } if (e.r > 0.5) { // Edge at west // Find the distance to the top: vec3 coords; coords.y = SMAASearchYUp(); coords.x = texcoord1.x; // texcoord1.x = texcoord0.x - 0.25; // Find the distance to the bottom: coords.z = SMAASearchYDown(); // We want the distances to be in pixel units: vec2 d = SMAARound(abs(coords.yz - texcoord0.y)); // Fetch the top crossing edges: vec2 e; e.x = textureRect(tex0, coords.xy).g; // Fetch the bottom crossing edges: e.y = textureRectOffset(tex0, coords.xz, ivec2(0, 1)).g; // Get the area for this direction: weights.ba = SMAAArea(d, e, subsamples.x); #if SMAA_CORNER_ROUNDING < 100 // Fix corners: coords.x = texcoord0.x; weights.ba *= SMAADetectVerticalCornerPattern(coords, d); #endif } fragcolor = weights; } ] shader 0 [SMAANeighborhoodBlending@smaapreset@smaaopts] [ in vec4 vvertex; @(screentexcoord 0) out vec2 texcoord0; void main(void) { gl_Position = vvertex; texcoord0 = vtexcoord0; } ] [ @smaadefs in vec2 texcoord0; uniform sampler2DRect tex0, tex1; @(? (smaaopt "s") [uniform sampler2DRect tex2, tex3;]) layout(location = 0) out vec4 fragcolor; // Neighborhood Blending Pixel Shader (Third Pass) void main(void) { // Fetch the blending weights for current pixel: vec4 a; a.xz = textureRect(tex1, texcoord0).rb; a.y = textureRectOffset(tex1, texcoord0, ivec2(0, 1)).g; a.w = textureRectOffset(tex1, texcoord0, ivec2(1, 0)).a; // Up to 4 lines can be crossing a pixel (one through each edge). We // favor blending by choosing the line with the maximum weight for each // direction: vec2 offset; offset.x = a.w > a.z ? a.w : -a.z; // left vs. right offset.y = a.y > a.x ? a.y : -a.x; // top vs. bottom // Then we go in the direction that has the maximum weight: if (abs(offset.x) > abs(offset.y)) // horizontal vs. vertical offset.y = 0.0; else offset.x = 0.0; // We exploit bilinear filtering to mix current pixel with the chosen // neighbor: fragcolor = textureRect(tex0, texcoord0 + offset); @(? (smaaopt "s") [ a.xz = textureRect(tex3, texcoord0).rb; a.y = textureRectOffset(tex3, texcoord0, ivec2(0, 1)).g; a.w = textureRectOffset(tex3, texcoord0, ivec2(1, 0)).a; offset.x = a.w > a.z ? a.w : -a.z; offset.y = a.y > a.x ? a.y : -a.x; if (abs(offset.x) > abs(offset.y)) offset.y = 0.0; else offset.x = 0.0; fragcolor = 0.5*(fragcolor + textureRect(tex2, texcoord0 + offset)); ]) } ]