#ifndef GEOM_HH #define GEOM_HH #include struct vec; struct vec4; namespace detail { template static inline T geom_max(T a, T b) { return (a > b) ? a : b; } template static inline T geom_min(T a, T b) { return (a < b) ? a : b; } template static inline T geom_clamp(T a, U b, U c) { return geom_max(T(b), geom_min(a, T(c))); } template static inline void geom_swap(T &a, T &b) { T t = a; a = b; b = t; } using uchar = unsigned char; using ushort = unsigned short; static constexpr float GEOM_PI = 3.14159265358979f; static constexpr float GEOM_RAD = GEOM_PI / 180.0f; } struct vec2 { union { struct { float x, y; }; float v[2]; }; vec2() {} vec2(float x, float y) : x(x), y(y) {} explicit vec2(const vec &v); explicit vec2(const vec4 &v); float &operator[](int i) { return v[i]; } float operator[](int i) const { return v[i]; } bool operator==(const vec2 &o) const { return x == o.x && y == o.y; } bool operator!=(const vec2 &o) const { return x != o.x || y != o.y; } bool iszero() const { return x==0 && y==0; } float dot(const vec2 &o) const { return x*o.x + y*o.y; } float squaredlen() const { return dot(*this); } float magnitude() const { return sqrtf(squaredlen()); } vec2 &normalize() { mul(1/magnitude()); return *this; } vec2 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; } float cross(const vec2 &o) const { return x*o.y - y*o.x; } float squaredist(const vec2 &e) const { return vec2(*this).sub(e).squaredlen(); } float dist(const vec2 &e) const { return sqrtf(squaredist(e)); } vec2 &mul(float f) { x *= f; y *= f; return *this; } vec2 &mul(const vec2 &o) { x *= o.x; y *= o.y; return *this; } vec2 &square() { mul(*this); return *this; } vec2 &div(float f) { x /= f; y /= f; return *this; } vec2 &div(const vec2 &o) { x /= o.x; y /= o.y; return *this; } vec2 &recip() { x = 1/x; y = 1/y; return *this; } vec2 &add(float f) { x += f; y += f; return *this; } vec2 &add(const vec2 &o) { x += o.x; y += o.y; return *this; } vec2 &sub(float f) { x -= f; y -= f; return *this; } vec2 &sub(const vec2 &o) { x -= o.x; y -= o.y; return *this; } vec2 &neg() { x = -x; y = -y; return *this; } vec2 &min(const vec2 &o) { x = detail::geom_min(x, o.x); y = detail::geom_min(y, o.y); return *this; } vec2 &max(const vec2 &o) { x = detail::geom_max(x, o.x); y = detail::geom_max(y, o.y); return *this; } vec2 &min(float f) { x = detail::geom_min(x, f); y = detail::geom_min(y, f); return *this; } vec2 &max(float f) { x = detail::geom_max(x, f); y = detail::geom_max(y, f); return *this; } vec2 &abs() { x = fabs(x); y = fabs(y); return *this; } vec2 &clamp(float l, float h) { x = detail::geom_clamp(x, l, h); y = detail::geom_clamp(y, l, h); return *this; } vec2 &reflect(const vec2 &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; return *this; } vec2 &lerp(const vec2 &b, float t) { x += (b.x-x)*t; y += (b.y-y)*t; return *this; } vec2 &lerp(const vec2 &a, const vec2 &b, float t) { x = a.x + (b.x-a.x)*t; y = a.y + (b.y-a.y)*t; return *this; } vec2 &avg(const vec2 &b) { add(b); mul(0.5f); return *this; } template vec2 &madd(const vec2 &a, const B &b) { return add(vec2(a).mul(b)); } template vec2 &msub(const vec2 &a, const B &b) { return sub(vec2(a).mul(b)); } vec2 &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; } vec2 &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); } vec2 &rotate_around_z(const vec2 &sc) { return rotate_around_z(sc.x, sc.y); } }; static inline bool htcmp(const vec2 &x, const vec2 &y) { return x == y; } static inline unsigned int hthash(const vec2 &k) { union { unsigned int i; float f; } x, y; x.f = k.x; y.f = k.y; unsigned int v = x.i^y.i; return v + (v>>12); } struct ivec; struct usvec; struct svec; struct vec { union { struct { float x, y, z; }; struct { float r, g, b; }; float v[3]; }; vec() {} explicit vec(int a) : x(a), y(a), z(a) {} explicit vec(float a) : x(a), y(a), z(a) {} vec(float a, float b, float c) : x(a), y(b), z(c) {} explicit vec(int v[3]) : x(v[0]), y(v[1]), z(v[2]) {} explicit vec(const float *v) : x(v[0]), y(v[1]), z(v[2]) {} explicit vec(const vec2 &v, float z = 0) : x(v.x), y(v.y), z(z) {} explicit vec(const vec4 &v); explicit vec(const ivec &v); explicit vec(const usvec &v); explicit vec(const svec &v); vec(float yaw, float pitch) : x(-sinf(yaw)*cosf(pitch)), y(cosf(yaw)*cosf(pitch)), z(sinf(pitch)) {} float &operator[](int i) { return v[i]; } float operator[](int i) const { return v[i]; } vec &set(int i, float f) { v[i] = f; return *this; } bool operator==(const vec &o) const { return x == o.x && y == o.y && z == o.z; } bool operator!=(const vec &o) const { return x != o.x || y != o.y || z != o.z; } bool iszero() const { return x==0 && y==0 && z==0; } float squaredlen() const { return x*x + y*y + z*z; } float dot2(const vec2 &o) const { return x*o.x + y*o.y; } float dot2(const vec &o) const { return x*o.x + y*o.y; } float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z; } float squaredot(const vec &o) const { float k = dot(o); return k*k; } float absdot(const vec &o) const { return fabs(x*o.x) + fabs(y*o.y) + fabs(z*o.z); } float zdot(const vec &o) const { return z*o.z; } vec &mul(const vec &o) { x *= o.x; y *= o.y; z *= o.z; return *this; } vec &mul(float f) { x *= f; y *= f; z *= f; return *this; } vec &mul2(float f) { x *= f; y *= f; return *this; } vec &square() { mul(*this); return *this; } vec &div(const vec &o) { x /= o.x; y /= o.y; z /= o.z; return *this; } vec &div(float f) { x /= f; y /= f; z /= f; return *this; } vec &div2(float f) { x /= f; y /= f; return *this; } vec &recip() { x = 1/x; y = 1/y; z = 1/z; return *this; } vec &add(const vec &o) { x += o.x; y += o.y; z += o.z; return *this; } vec &add(float f) { x += f; y += f; z += f; return *this; } vec &add2(float f) { x += f; y += f; return *this; } vec &addz(float f) { z += f; return *this; } vec &sub(const vec &o) { x -= o.x; y -= o.y; z -= o.z; return *this; } vec &sub(float f) { x -= f; y -= f; z -= f; return *this; } vec &sub2(float f) { x -= f; y -= f; return *this; } vec &subz(float f) { z -= f; return *this; } vec &neg2() { x = -x; y = -y; return *this; } vec &neg() { x = -x; y = -y; z = -z; return *this; } vec &min(const vec &o) { x = detail::geom_min(x, o.x); y = detail::geom_min(y, o.y); z = detail::geom_min(z, o.z); return *this; } vec &max(const vec &o) { x = detail::geom_max(x, o.x); y = detail::geom_max(y, o.y); z = detail::geom_max(z, o.z); return *this; } vec &min(float f) { x = detail::geom_min(x, f); y = detail::geom_min(y, f); z = detail::geom_min(z, f); return *this; } vec &max(float f) { x = detail::geom_max(x, f); y = detail::geom_max(y, f); z = detail::geom_max(z, f); return *this; } vec &abs() { x = fabs(x); y = fabs(y); z = fabs(z); return *this; } vec &clamp(float l, float h) { x = detail::geom_clamp(x, l, h); y = detail::geom_clamp(y, l, h); z = detail::geom_clamp(z, l, h); return *this; } float magnitude2() const { return sqrtf(dot2(*this)); } float magnitude() const { return sqrtf(squaredlen()); } vec &normalize() { div(magnitude()); return *this; } vec &safenormalize() { float m = magnitude(); if(m) div(m); return *this; } bool isnormalized() const { float m = squaredlen(); return (m>0.99f && m<1.01f); } float squaredist(const vec &e) const { return vec(*this).sub(e).squaredlen(); } float dist(const vec &e) const { return sqrtf(squaredist(e)); } float dist(const vec &e, vec &t) const { t = *this; t.sub(e); return t.magnitude(); } float dist2(const vec &o) const { float dx = x-o.x, dy = y-o.y; return sqrtf(dx*dx + dy*dy); } template bool reject(const T &o, float r) { return x>o.x+r || xo.y+r || y vec &cross(const A &a, const B &b) { x = a.y*b.z-a.z*b.y; y = a.z*b.x-a.x*b.z; z = a.x*b.y-a.y*b.x; return *this; } vec &cross(const vec &o, const vec &a, const vec &b) { return cross(vec(a).sub(o), vec(b).sub(o)); } float scalartriple(const vec &a, const vec &b) const { return x*(a.y*b.z-a.z*b.y) + y*(a.z*b.x-a.x*b.z) + z*(a.x*b.y-a.y*b.x); } float zscalartriple(const vec &a, const vec &b) const { return z*(a.x*b.y-a.y*b.x); } vec &reflectz(float rz) { z = 2*rz - z; return *this; } vec &reflect(const vec &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; } vec &project(const vec &n) { float k = dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; } vec &projectxydir(const vec &n) { if(n.z) z = -(x*n.x/n.z + y*n.y/n.z); return *this; } vec &projectxy(const vec &n) { float m = squaredlen(), k = dot(n); projectxydir(n); rescale(sqrtf(detail::geom_max(m - k*k, 0.0f))); return *this; } vec &projectxy(const vec &n, float threshold) { float m = squaredlen(), k = detail::geom_min(dot(n), threshold); projectxydir(n); rescale(sqrtf(detail::geom_max(m - k*k, 0.0f))); return *this; } vec &lerp(const vec &b, float t) { x += (b.x-x)*t; y += (b.y-y)*t; z += (b.z-z)*t; return *this; } vec &lerp(const vec &a, const vec &b, float t) { x = a.x + (b.x-a.x)*t; y = a.y + (b.y-a.y)*t; z = a.z + (b.z-a.z)*t; return *this; } vec &avg(const vec &b) { add(b); mul(0.5f); return *this; } template vec &madd(const vec &a, const B &b) { return add(vec(a).mul(b)); } template vec &msub(const vec &a, const B &b) { return sub(vec(a).mul(b)); } vec &rescale(float k) { float mag = magnitude(); if(mag > 1e-6f) mul(k / mag); return *this; } vec &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; } vec &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; } vec &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx+s*rz; z = c*rz-s*rx; return *this; } vec &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); } vec &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); } vec &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); } vec &rotate_around_z(const vec2 &sc) { return rotate_around_z(sc.x, sc.y); } vec &rotate_around_x(const vec2 &sc) { return rotate_around_x(sc.x, sc.y); } vec &rotate_around_y(const vec2 &sc) { return rotate_around_y(sc.x, sc.y); } vec &rotate(float c, float s, const vec &d) { *this = vec(x*(d.x*d.x*(1-c)+c) + y*(d.x*d.y*(1-c)-d.z*s) + z*(d.x*d.z*(1-c)+d.y*s), x*(d.y*d.x*(1-c)+d.z*s) + y*(d.y*d.y*(1-c)+c) + z*(d.y*d.z*(1-c)-d.x*s), x*(d.x*d.z*(1-c)-d.y*s) + y*(d.y*d.z*(1-c)+d.x*s) + z*(d.z*d.z*(1-c)+c)); return *this; } vec &rotate(float angle, const vec &d) { return rotate(cosf(angle), sinf(angle), d); } vec &rotate(const vec2 &sc, const vec &d) { return rotate(sc.x, sc.y, d); } void orthogonal(const vec &d) { *this = fabs(d.x) > fabs(d.z) ? vec(-d.y, d.x, 0) : vec(0, -d.z, d.y); } void orthonormalize(vec &s, vec &t) const { s.project(*this); t.project(*this).project(s); } template bool insidebb(const T &bbmin, const T &bbmax) const { return x >= bbmin.x && x <= bbmax.x && y >= bbmin.y && y <= bbmax.y && z >= bbmin.z && z <= bbmax.z; } template bool insidebb(const T &bbmin, const T &bbmax, U margin) const { return x >= bbmin.x-margin && x <= bbmax.x+margin && y >= bbmin.y-margin && y <= bbmax.y+margin && z >= bbmin.z-margin && z <= bbmax.z+margin; } template bool insidebb(const T &o, U size) const { return x >= o.x && x <= o.x + size && y >= o.y && y <= o.y + size && z >= o.z && z <= o.z + size; } template bool insidebb(const T &o, U size, U margin) const { size += margin; return x >= o.x-margin && x <= o.x + size && y >= o.y-margin && y <= o.y + size && z >= o.z-margin && z <= o.z + size; } template float dist_to_bb(const T &min, const T &max) const { float sqrdist = 0; for (int i = 0; i < 3; ++i) { if (v[i] < min[i]) { float delta = v[i]-min[i]; sqrdist += delta*delta; } else if(v[i] > max[i]) { float delta = max[i]-v[i]; sqrdist += delta*delta; } } return sqrtf(sqrdist); } template float dist_to_bb(const T &o, S size) const { return dist_to_bb(o, T(o).add(size)); } template float project_bb(const T &min, const T &max) const { return x*(x < 0 ? max.x : min.x) + y*(y < 0 ? max.y : min.y) + z*(z < 0 ? max.z : min.z); } static vec hexcolor(int color) { return vec(((color>>16)&0xFF)*(1.0f/255.0f), ((color>>8)&0xFF)*(1.0f/255.0f), (color&0xFF)*(1.0f/255.0f)); } int tohexcolor() const { return (int(detail::geom_clamp(r, 0.0f, 1.0f)*255)<<16)|(int(detail::geom_clamp(g, 0.0f, 1.0f)*255)<<8)|int(detail::geom_clamp(b, 0.0f, 1.0f)*255); } }; inline vec2::vec2(const vec &v) : x(v.x), y(v.y) {} static inline bool htcmp(const vec &x, const vec &y) { return x == y; } static inline unsigned int hthash(const vec &k) { union { unsigned int i; float f; } x, y, z; x.f = k.x; y.f = k.y; z.f = k.z; unsigned int v = x.i^y.i^z.i; return v + (v>>12); } struct vec4 { union { struct { float x, y, z, w; }; struct { float r, g, b, a; }; float v[4]; }; vec4() {} explicit vec4(const vec &p, float w = 0) : x(p.x), y(p.y), z(p.z), w(w) {} explicit vec4(const vec2 &p, float z = 0, float w = 0) : x(p.x), y(p.y), z(z), w(w) {} vec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} explicit vec4(const float *v) : x(v[0]), y(v[1]), z(v[2]), w(v[3]) {} float &operator[](int i) { return v[i]; } float operator[](int i) const { return v[i]; } bool operator==(const vec4 &o) const { return x == o.x && y == o.y && z == o.z && w == o.w; } bool operator!=(const vec4 &o) const { return x != o.x || y != o.y || z != o.z || w != o.w; } float dot3(const vec4 &o) const { return x*o.x + y*o.y + z*o.z; } float dot3(const vec &o) const { return x*o.x + y*o.y + z*o.z; } float dot(const vec4 &o) const { return dot3(o) + w*o.w; } float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z + w; } float squaredlen() const { return dot(*this); } float magnitude() const { return sqrtf(squaredlen()); } float magnitude3() const { return sqrtf(dot3(*this)); } vec4 &normalize() { mul(1/magnitude()); return *this; } vec4 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; } vec4 &lerp(const vec4 &b, float t) { x += (b.x-x)*t; y += (b.y-y)*t; z += (b.z-z)*t; w += (b.w-w)*t; return *this; } vec4 &lerp(const vec4 &a, const vec4 &b, float t) { x = a.x+(b.x-a.x)*t; y = a.y+(b.y-a.y)*t; z = a.z+(b.z-a.z)*t; w = a.w+(b.w-a.w)*t; return *this; } vec4 &avg(const vec4 &b) { add(b); mul(0.5f); return *this; } template vec4 &madd(const vec4 &a, const B &b) { return add(vec4(a).mul(b)); } template vec4 &msub(const vec4 &a, const B &b) { return sub(vec4(a).mul(b)); } vec4 &mul3(float f) { x *= f; y *= f; z *= f; return *this; } vec4 &mul(float f) { mul3(f); w *= f; return *this; } vec4 &mul(const vec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; } vec4 &mul(const vec &o) { x *= o.x; y *= o.y; z *= o.z; return *this; } vec4 &square() { mul(*this); return *this; } vec4 &div3(float f) { x /= f; y /= f; z /= f; return *this; } vec4 &div(float f) { div3(f); w /= f; return *this; } vec4 &div(const vec4 &o) { x /= o.x; y /= o.y; z /= o.z; w /= o.w; return *this; } vec4 &div(const vec &o) { x /= o.x; y /= o.y; z /= o.z; return *this; } vec4 &recip() { x = 1/x; y = 1/y; z = 1/z; w = 1/w; return *this; } vec4 &add(const vec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; } vec4 &add(const vec &o) { x += o.x; y += o.y; z += o.z; return *this; } vec4 &add3(float f) { x += f; y += f; z += f; return *this; } vec4 &add(float f) { add3(f); w += f; return *this; } vec4 &addw(float f) { w += f; return *this; } vec4 &sub(const vec4 &o) { x -= o.x; y -= o.y; z -= o.z; w -= o.w; return *this; } vec4 &sub(const vec &o) { x -= o.x; y -= o.y; z -= o.z; return *this; } vec4 &sub3(float f) { x -= f; y -= f; z -= f; return *this; } vec4 &sub(float f) { sub3(f); w -= f; return *this; } vec4 &subw(float f) { w -= f; return *this; } vec4 &neg3() { x = -x; y = -y; z = -z; return *this; } vec4 &neg() { neg3(); w = -w; return *this; } vec4 &clamp(float l, float h) { x = detail::geom_clamp(x, l, h); y = detail::geom_clamp(y, l, h); z = detail::geom_clamp(z, l, h); w = detail::geom_clamp(w, l, h); return *this; } template vec4 &cross(const A &a, const B &b) { x = a.y*b.z-a.z*b.y; y = a.z*b.x-a.x*b.z; z = a.x*b.y-a.y*b.x; return *this; } vec4 &cross(const vec &o, const vec &a, const vec &b) { return cross(vec(a).sub(o), vec(b).sub(o)); } void setxyz(const vec &v) { x = v.x; y = v.y; z = v.z; } vec4 &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; } vec4 &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; } vec4 &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx-s*rz; z = c*rz+s*rx; return *this; } vec4 &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); } vec4 &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); } vec4 &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); } vec4 &rotate_around_z(const vec2 &sc) { return rotate_around_z(sc.x, sc.y); } vec4 &rotate_around_x(const vec2 &sc) { return rotate_around_x(sc.x, sc.y); } vec4 &rotate_around_y(const vec2 &sc) { return rotate_around_y(sc.x, sc.y); } }; inline vec2::vec2(const vec4 &v) : x(v.x), y(v.y) {} inline vec::vec(const vec4 &v) : x(v.x), y(v.y), z(v.z) {} struct matrix3; struct matrix4x3; struct matrix4; struct quat : vec4 { quat() {} quat(float x, float y, float z, float w) : vec4(x, y, z, w) {} quat(const vec &axis, float angle) { w = cosf(angle/2); float s = sinf(angle/2); x = s*axis.x; y = s*axis.y; z = s*axis.z; } quat(const vec &u, const vec &v) { w = sqrtf(u.squaredlen() * v.squaredlen()) + u.dot(v); cross(u, v); normalize(); } explicit quat(const vec &v) { x = v.x; y = v.y; z = v.z; restorew(); } explicit quat(const matrix3 &m) { convertmatrix(m); } explicit quat(const matrix4x3 &m) { convertmatrix(m); } explicit quat(const matrix4 &m) { convertmatrix(m); } void restorew() { w = 1.0f-x*x-y*y-z*z; w = w<0 ? 0 : -sqrtf(w); } quat &add(const vec4 &o) { vec4::add(o); return *this; } quat &sub(const vec4 &o) { vec4::sub(o); return *this; } quat &mul(float k) { vec4::mul(k); return *this; } template quat &madd(const vec4 &a, const B &b) { return add(vec4(a).mul(b)); } template quat &msub(const vec4 &a, const B &b) { return sub(vec4(a).mul(b)); } quat &mul(const quat &p, const quat &o) { x = p.w*o.x + p.x*o.w + p.y*o.z - p.z*o.y; y = p.w*o.y - p.x*o.z + p.y*o.w + p.z*o.x; z = p.w*o.z + p.x*o.y - p.y*o.x + p.z*o.w; w = p.w*o.w - p.x*o.x - p.y*o.y - p.z*o.z; return *this; } quat &mul(const quat &o) { return mul(quat(*this), o); } quat &invert() { neg3(); return *this; } quat &normalize() { vec4::normalize(); return *this; } void calcangleaxis(float &angle, vec &axis) const { float rr = dot3(*this); if(rr>0) { angle = 2*acosf(w); axis = vec(x, y, z).mul(1/rr); } else { angle = 0; axis = vec(0, 0, 1); } } vec calcangles() const { vec4 qq = vec4(*this).square(); float rr = qq.x + qq.y + qq.z + qq.w, t = x*y + z*w; if(fabs(t) > 0.49999f*rr) return t < 0 ? vec(-2*atan2f(x, w), -M_PI/2, 0) : vec(2*atan2f(x, w), M_PI/2, 0); return vec(atan2f(2*(y*w - x*z), qq.x - qq.y - qq.z + qq.w), asinf(2*t/rr), atan2f(2*(x*w - y*z), -qq.x + qq.y - qq.z + qq.w)); } vec rotate(const vec &v) const { return vec().cross(*this, vec().cross(*this, v).madd(v, w)).mul(2).add(v); } vec invertedrotate(const vec &v) const { return vec().cross(*this, vec().cross(*this, v).msub(v, w)).mul(2).add(v); } template void convertmatrix(const M &m) { float trace = m.a.x + m.b.y + m.c.z; if(trace>0) { float r = sqrtf(1 + trace), inv = 0.5f/r; w = 0.5f*r; x = (m.b.z - m.c.y)*inv; y = (m.c.x - m.a.z)*inv; z = (m.a.y - m.b.x)*inv; } else if(m.a.x > m.b.y && m.a.x > m.c.z) { float r = sqrtf(1 + m.a.x - m.b.y - m.c.z), inv = 0.5f/r; x = 0.5f*r; y = (m.a.y + m.b.x)*inv; z = (m.c.x + m.a.z)*inv; w = (m.b.z - m.c.y)*inv; } else if(m.b.y > m.c.z) { float r = sqrtf(1 + m.b.y - m.a.x - m.c.z), inv = 0.5f/r; x = (m.a.y + m.b.x)*inv; y = 0.5f*r; z = (m.b.z + m.c.y)*inv; w = (m.c.x - m.a.z)*inv; } else { float r = sqrtf(1 + m.c.z - m.a.x - m.b.y), inv = 0.5f/r; x = (m.c.x + m.a.z)*inv; y = (m.b.z + m.c.y)*inv; z = 0.5f*r; w = (m.a.y - m.b.x)*inv; } } }; struct dualquat { quat real, dual; dualquat() {} dualquat(const quat &q, const vec &p) : real(q), dual(0.5f*( p.x*q.w + p.y*q.z - p.z*q.y), 0.5f*(-p.x*q.z + p.y*q.w + p.z*q.x), 0.5f*( p.x*q.y - p.y*q.x + p.z*q.w), -0.5f*( p.x*q.x + p.y*q.y + p.z*q.z)) { } explicit dualquat(const quat &q) : real(q), dual(0, 0, 0, 0) {} explicit dualquat(const matrix4x3 &m); dualquat &mul(float k) { real.mul(k); dual.mul(k); return *this; } dualquat &add(const dualquat &d) { real.add(d.real); dual.add(d.dual); return *this; } dualquat &lerp(const dualquat &to, float t) { float k = real.dot(to.real) < 0 ? -t : t; real.mul(1-t).madd(to.real, k); dual.mul(1-t).madd(to.dual, k); return *this; } dualquat &lerp(const dualquat &from, const dualquat &to, float t) { float k = from.real.dot(to.real) < 0 ? -t : t; (real = from.real).mul(1-t).madd(to.real, k); (dual = from.dual).mul(1-t).madd(to.dual, k); return *this; } dualquat &invert() { real.invert(); dual.invert(); dual.msub(real, 2*real.dot(dual)); return *this; } void mul(const dualquat &p, const dualquat &o) { real.mul(p.real, o.real); dual.mul(p.real, o.dual).add(quat().mul(p.dual, o.real)); } void mul(const dualquat &o) { mul(dualquat(*this), o); } void mulorient(const quat &q) { real.mul(q, quat(real)); dual.mul(quat(q).invert(), quat(dual)); } void mulorient(const quat &q, const dualquat &base) { quat trans; trans.mul(base.dual, quat(base.real).invert()); dual.mul(quat(q).invert(), quat().mul(real, trans).add(dual)); real.mul(q, quat(real)); dual.add(quat().mul(real, trans.invert())).msub(real, 2*base.real.dot(base.dual)); } void normalize() { float invlen = 1/real.magnitude(); real.mul(invlen); dual.mul(invlen); } void translate(const vec &p) { dual.x += 0.5f*( p.x*real.w + p.y*real.z - p.z*real.y); dual.y += 0.5f*(-p.x*real.z + p.y*real.w + p.z*real.x); dual.z += 0.5f*( p.x*real.y - p.y*real.x + p.z*real.w); dual.w += -0.5f*( p.x*real.x + p.y*real.y + p.z*real.z); } void scale(float k) { dual.mul(k); } void fixantipodal(const dualquat &d) { if(real.dot(d.real) < 0) { real.neg(); dual.neg(); } } void accumulate(const dualquat &d, float k) { if(real.dot(d.real) < 0) k = -k; real.madd(d.real, k); dual.madd(d.dual, k); } vec transform(const vec &v) const { return vec().cross(real, vec().cross(real, v).madd(v, real.w).add(vec(dual))).madd(vec(dual), real.w).msub(vec(real), dual.w).mul(2).add(v); } quat transform(const quat &q) const { return quat().mul(real, q); } vec transposedtransform(const vec &v) const { return dualquat(*this).invert().transform(v); } vec transformnormal(const vec &v) const { return real.rotate(v); } vec transposedtransformnormal(const vec &v) const { return real.invertedrotate(v); } vec gettranslation() const { return vec().cross(real, dual).madd(vec(dual), real.w).msub(vec(real), dual.w).mul(2); } }; struct matrix3 { vec a, b, c; matrix3() {} matrix3(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {} explicit matrix3(float angle, const vec &axis) { rotate(angle, axis); } explicit matrix3(const quat &q) { float x = q.x, y = q.y, z = q.z, w = q.w, tx = 2*x, ty = 2*y, tz = 2*z, txx = tx*x, tyy = ty*y, tzz = tz*z, txy = tx*y, txz = tx*z, tyz = ty*z, twx = w*tx, twy = w*ty, twz = w*tz; a = vec(1 - (tyy + tzz), txy + twz, txz - twy); b = vec(txy - twz, 1 - (txx + tzz), tyz + twx); c = vec(txz + twy, tyz - twx, 1 - (txx + tyy)); } explicit matrix3(const matrix4x3 &m); explicit matrix3(const matrix4 &m); void mul(const matrix3 &m, const matrix3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); } void mul(const matrix3 &n) { mul(matrix3(*this), n); } void multranspose(const matrix3 &m, const matrix3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x); b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y); c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z); } void multranspose(const matrix3 &n) { multranspose(matrix3(*this), n); } void transposemul(const matrix3 &m, const matrix3 &n) { a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a)); b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b)); c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c)); } void transposemul(const matrix3 &n) { transposemul(matrix3(*this), n); } void transpose() { detail::geom_swap(a.y, b.x); detail::geom_swap(a.z, c.x); detail::geom_swap(b.z, c.y); } template void transpose(const M &m) { a = vec(m.a.x, m.b.x, m.c.x); b = vec(m.a.y, m.b.y, m.c.y); c = vec(m.a.z, m.b.z, m.c.z); } void invert(const matrix3 &o) { vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen()); transpose(o); a.mul(unscale); b.mul(unscale); c.mul(unscale); } void invert() { invert(matrix3(*this)); } void normalize() { a.normalize(); b.normalize(); c.normalize(); } void scale(float k) { a.mul(k); b.mul(k); c.mul(k); } void rotate(float angle, const vec &axis) { rotate(cosf(angle), sinf(angle), axis); } void rotate(float ck, float sk, const vec &axis) { a = vec(axis.x*axis.x*(1-ck)+ck, axis.x*axis.y*(1-ck)+axis.z*sk, axis.x*axis.z*(1-ck)-axis.y*sk); b = vec(axis.x*axis.y*(1-ck)-axis.z*sk, axis.y*axis.y*(1-ck)+ck, axis.y*axis.z*(1-ck)+axis.x*sk); c = vec(axis.x*axis.z*(1-ck)+axis.y*sk, axis.y*axis.z*(1-ck)-axis.x*sk, axis.z*axis.z*(1-ck)+ck); } void setyaw(float ck, float sk) { a = vec(ck, sk, 0); b = vec(-sk, ck, 0); c = vec(0, 0, 1); } void setyaw(float angle) { setyaw(cosf(angle), sinf(angle)); } float trace() const { return a.x + b.y + c.z; } bool calcangleaxis(float tr, float &angle, vec &axis, float threshold = 1e-16f) const { if(tr <= -1) { if(a.x >= b.y && a.x >= c.z) { float r = 1 + a.x - b.y - c.z; if(r <= threshold) return false; r = sqrtf(r); axis.x = 0.5f*r; axis.y = b.x/r; axis.z = c.x/r; } else if(b.y >= c.z) { float r = 1 + b.y - a.x - c.z; if(r <= threshold) return false; r = sqrtf(r); axis.y = 0.5f*r; axis.x = b.x/r; axis.z = c.y/r; } else { float r = 1 + b.y - a.x - c.z; if(r <= threshold) return false; r = sqrtf(r); axis.z = 0.5f*r; axis.x = c.x/r; axis.y = c.y/r; } angle = M_PI; } else if(tr >= 3) { axis = vec(0, 0, 1); angle = 0; } else { axis = vec(b.z - c.y, c.x - a.z, a.y - b.x); float r = axis.squaredlen(); if(r <= threshold) return false; axis.mul(1/sqrtf(r)); angle = acosf(0.5f*(tr - 1)); } return true; } bool calcangleaxis(float &angle, vec &axis, float threshold = 1e-16f) const { return calcangleaxis(trace(), angle, axis, threshold); } vec transform(const vec &o) const { return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z); } vec transposedtransform(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); } vec abstransform(const vec &o) const { return vec(a).mul(o.x).abs().add(vec(b).mul(o.y).abs()).add(vec(c).mul(o.z).abs()); } vec abstransposedtransform(const vec &o) const { return vec(a.absdot(o), b.absdot(o), c.absdot(o)); } void identity() { a = vec(1, 0, 0); b = vec(0, 1, 0); c = vec(0, 0, 1); } void rotate_around_x(float ck, float sk) { vec rb = vec(b).mul(ck).madd(c, sk), rc = vec(c).mul(ck).msub(b, sk); b = rb; c = rc; } void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } void rotate_around_y(float ck, float sk) { vec rc = vec(c).mul(ck).madd(a, sk), ra = vec(a).mul(ck).msub(c, sk); c = rc; a = ra; } void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } void rotate_around_z(float ck, float sk) { vec ra = vec(a).mul(ck).madd(b, sk), rb = vec(b).mul(ck).msub(a, sk); a = ra; b = rb; } void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } vec transform(const vec2 &o) { return vec(a).mul(o.x).madd(b, o.y); } vec transposedtransform(const vec2 &o) const { return vec(a.dot2(o), b.dot2(o), c.dot2(o)); } vec rowx() const { return vec(a.x, b.x, c.x); } vec rowy() const { return vec(a.y, b.y, c.y); } vec rowz() const { return vec(a.z, b.z, c.z); } }; struct matrix4x3 { vec a, b, c, d; matrix4x3() {} matrix4x3(const vec &a, const vec &b, const vec &c, const vec &d) : a(a), b(b), c(c), d(d) {} matrix4x3(const matrix3 &rot, const vec &trans) : a(rot.a), b(rot.b), c(rot.c), d(trans) {} matrix4x3(const dualquat &dq) { vec4 r = vec4(dq.real).mul(1/dq.real.squaredlen()), rr = vec4(r).mul(dq.real); r.mul(2); float xy = r.x*dq.real.y, xz = r.x*dq.real.z, yz = r.y*dq.real.z, wx = r.w*dq.real.x, wy = r.w*dq.real.y, wz = r.w*dq.real.z; a = vec(rr.w + rr.x - rr.y - rr.z, xy + wz, xz - wy); b = vec(xy - wz, rr.w + rr.y - rr.x - rr.z, yz + wx); c = vec(xz + wy, yz - wx, rr.w + rr.z - rr.x - rr.y); d = vec(-(dq.dual.w*r.x - dq.dual.x*r.w + dq.dual.y*r.z - dq.dual.z*r.y), -(dq.dual.w*r.y - dq.dual.x*r.z - dq.dual.y*r.w + dq.dual.z*r.x), -(dq.dual.w*r.z + dq.dual.x*r.y - dq.dual.y*r.x - dq.dual.z*r.w)); } explicit matrix4x3(const matrix4 &m); void mul(float k) { a.mul(k); b.mul(k); c.mul(k); d.mul(k); } void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; } void setscale(const vec &v) { setscale(v.x, v.y, v.z); } void setscale(float n) { setscale(n, n, n); } void scale(float x, float y, float z) { a.mul(x); b.mul(y); c.mul(z); } void scale(const vec &v) { scale(v.x, v.y, v.z); } void scale(float n) { scale(n, n, n); } void settranslation(const vec &p) { d = p; } void settranslation(float x, float y, float z) { d = vec(x, y, z); } void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); } void translate(float x, float y, float z) { translate(vec(x, y, z)); } void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); } void accumulate(const matrix4x3 &m, float k) { a.madd(m.a, k); b.madd(m.b, k); c.madd(m.c, k); d.madd(m.d, k); } void normalize() { a.normalize(); b.normalize(); c.normalize(); } void lerp(const matrix4x3 &to, float t) { a.lerp(to.a, t); b.lerp(to.b, t); c.lerp(to.c, t); d.lerp(to.d, t); } void lerp(const matrix4x3 &from, const matrix4x3 &to, float t) { a.lerp(from.a, to.a, t); b.lerp(from.b, to.b, t); c.lerp(from.c, to.c, t); d.lerp(from.d, to.d, t); } void identity() { a = vec(1, 0, 0); b = vec(0, 1, 0); c = vec(0, 0, 1); d = vec(0, 0, 0); } void mul(const matrix4x3 &m, const matrix4x3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); d = vec(m.d).madd(m.a, n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z); } void mul(const matrix4x3 &n) { mul(matrix4x3(*this), n); } void mul(const matrix3 &m, const matrix4x3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); d = vec(m.a).mul(n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z); } void mul(const matrix3 &rot, const vec &trans, const matrix4x3 &n) { mul(rot, n); d.add(trans); } void transpose() { d = vec(a.dot(d), b.dot(d), c.dot(d)).neg(); detail::geom_swap(a.y, b.x); detail::geom_swap(a.z, c.x); detail::geom_swap(b.z, c.y); } void transpose(const matrix4x3 &o) { a = vec(o.a.x, o.b.x, o.c.x); b = vec(o.a.y, o.b.y, o.c.y); c = vec(o.a.z, o.b.z, o.c.z); d = vec(o.a.dot(o.d), o.b.dot(o.d), o.c.dot(o.d)).neg(); } void transposemul(const matrix4x3 &m, const matrix4x3 &n) { vec t(m.a.dot(m.d), m.b.dot(m.d), m.c.dot(m.d)); a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a)); b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b)); c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c)); d = vec(m.a.dot(n.d), m.b.dot(n.d), m.c.dot(n.d)).sub(t); } void multranspose(const matrix4x3 &m, const matrix4x3 &n) { vec t(n.a.dot(n.d), n.b.dot(n.d), n.c.dot(n.d)); a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x); b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y); c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z); d = vec(m.d).msub(m.a, t.x).msub(m.b, t.y).msub(m.c, t.z); } void invert(const matrix4x3 &o) { vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen()); transpose(o); a.mul(unscale); b.mul(unscale); c.mul(unscale); d.mul(unscale); } void invert() { invert(matrix4x3(*this)); } void rotate(float angle, const vec &d) { rotate(cosf(angle), sinf(angle), d); } void rotate(float ck, float sk, const vec &axis) { matrix3 m; m.rotate(ck, sk, axis); *this = matrix4x3(m, vec(0, 0, 0)); } void rotate_around_x(float ck, float sk) { vec rb = vec(b).mul(ck).madd(c, sk), rc = vec(c).mul(ck).msub(b, sk); b = rb; c = rc; } void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } void rotate_around_y(float ck, float sk) { vec rc = vec(c).mul(ck).madd(a, sk), ra = vec(a).mul(ck).msub(c, sk); c = rc; a = ra; } void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } void rotate_around_z(float ck, float sk) { vec ra = vec(a).mul(ck).madd(b, sk), rb = vec(b).mul(ck).msub(a, sk); a = ra; b = rb; } void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } vec transform(const vec &o) const { return vec(d).madd(a, o.x).madd(b, o.y).madd(c, o.z); } vec transposedtransform(const vec &o) const { vec p = vec(o).sub(d); return vec(a.dot(p), b.dot(p), c.dot(p)); } vec transformnormal(const vec &o) const { return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z); } vec transposedtransformnormal(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); } vec transform(const vec2 &o) const { return vec(d).madd(a, o.x).madd(b, o.y); } vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); } vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); } vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); } }; inline dualquat::dualquat(const matrix4x3 &m) : real(m) { dual.x = 0.5f*( m.d.x*real.w + m.d.y*real.z - m.d.z*real.y); dual.y = 0.5f*(-m.d.x*real.z + m.d.y*real.w + m.d.z*real.x); dual.z = 0.5f*( m.d.x*real.y - m.d.y*real.x + m.d.z*real.w); dual.w = -0.5f*( m.d.x*real.x + m.d.y*real.y + m.d.z*real.z); } inline matrix3::matrix3(const matrix4x3 &m) : a(m.a), b(m.b), c(m.c) {} struct plane : vec { float offset; float dist(const vec &p) const { return dot(p)+offset; } float dist(const vec4 &p) const { return p.dot3(*this) + p.w*offset; } bool operator==(const plane &p) const { return x==p.x && y==p.y && z==p.z && offset==p.offset; } bool operator!=(const plane &p) const { return x!=p.x || y!=p.y || z!=p.z || offset!=p.offset; } plane() {} plane(const vec &c, float off) : vec(c), offset(off) {} plane(const vec4 &p) : vec(p), offset(p.w) {} plane(int d, float off) { x = y = z = 0.0f; v[d] = 1.0f; offset = -off; } plane(float a, float b, float c, float d) : vec(a, b, c), offset(d) {} void toplane(const vec &n, const vec &p) { x = n.x; y = n.y; z = n.z; offset = -dot(p); } bool toplane(const vec &a, const vec &b, const vec &c) { cross(vec(b).sub(a), vec(c).sub(a)); float mag = magnitude(); if(!mag) return false; div(mag); offset = -dot(a); return true; } bool rayintersect(const vec &o, const vec &ray, float &dist) { float cosalpha = dot(ray); if(cosalpha==0) return false; float deltac = offset+dot(o); dist -= deltac/cosalpha; return true; } plane &reflectz(float rz) { offset += 2*rz*z; z = -z; return *this; } plane &invert() { neg(); offset = -offset; return *this; } plane &scale(float k) { mul(k); return *this; } plane &translate(const vec &p) { offset += dot(p); return *this; } plane &normalize() { float mag = magnitude(); div(mag); offset /= mag; return *this; } float zintersect(const vec &p) const { return -(x*p.x+y*p.y+offset)/z; } float zdelta(const vec &p) const { return -(x*p.x+y*p.y)/z; } float zdist(const vec &p) const { return p.z-zintersect(p); } }; struct triangle { vec a, b, c; triangle(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {} triangle() {} triangle &add(const vec &o) { a.add(o); b.add(o); c.add(o); return *this; } triangle &sub(const vec &o) { a.sub(o); b.sub(o); c.sub(o); return *this; } bool operator==(const triangle &t) const { return a == t.a && b == t.b && c == t.c; } }; /** The engine uses 3 different linear coordinate systems which are oriented around each of the axis dimensions. So any point within the game can be defined by four coordinates: (d, x, y, z) d is the reference axis dimension x is the coordinate of the ROW dimension y is the coordinate of the COL dimension z is the coordinate of the reference dimension (DEPTH) typically, if d is not used, then it is implicitly the Z dimension. ie: d=z => x=x, y=y, z=z **/ // DIM: X=0 Y=1 Z=2. const int R[3] = {1, 2, 0}; // row const int C[3] = {2, 0, 1}; // col const int D[3] = {0, 1, 2}; // depth struct ivec4; struct ivec2; struct ivec { union { struct { int x, y, z; }; struct { int r, g, b; }; int v[3]; }; ivec() {} explicit ivec(const vec &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)) {} ivec(int a, int b, int c) : x(a), y(b), z(c) {} ivec(int d, int row, int col, int depth) { v[R[d]] = row; v[C[d]] = col; v[D[d]] = depth; } ivec(int i, const ivec &co, int size) : x(co.x+((i&1)>>0)*size), y(co.y+((i&2)>>1)*size), z(co.z +((i&4)>>2)*size) {} explicit ivec(const ivec4 &v); explicit ivec(const ivec2 &v, int z = 0); explicit ivec(const usvec &v); explicit ivec(const svec &v); int &operator[](int i) { return v[i]; } int operator[](int i) const { return v[i]; } //int idx(int i) { return v[i]; } bool operator==(const ivec &v) const { return x==v.x && y==v.y && z==v.z; } bool operator!=(const ivec &v) const { return x!=v.x || y!=v.y || z!=v.z; } bool iszero() const { return x==0 && y==0 && z==0; } ivec &shl(int n) { x<<= n; y<<= n; z<<= n; return *this; } ivec &shr(int n) { x>>= n; y>>= n; z>>= n; return *this; } ivec &mul(int n) { x *= n; y *= n; z *= n; return *this; } ivec &div(int n) { x /= n; y /= n; z /= n; return *this; } ivec &add(int n) { x += n; y += n; z += n; return *this; } ivec &sub(int n) { x -= n; y -= n; z -= n; return *this; } ivec &mul(const ivec &v) { x *= v.x; y *= v.y; z *= v.z; return *this; } ivec &div(const ivec &v) { x /= v.x; y /= v.y; z /= v.z; return *this; } ivec &add(const ivec &v) { x += v.x; y += v.y; z += v.z; return *this; } ivec &sub(const ivec &v) { x -= v.x; y -= v.y; z -= v.z; return *this; } ivec &mask(int n) { x &= n; y &= n; z &= n; return *this; } ivec &neg() { x = -x; y = -y; z = -z; return *this; } ivec &min(const ivec &o) { x = detail::geom_min(x, o.x); y = detail::geom_min(y, o.y); z = detail::geom_min(z, o.z); return *this; } ivec &max(const ivec &o) { x = detail::geom_max(x, o.x); y = detail::geom_max(y, o.y); z = detail::geom_max(z, o.z); return *this; } ivec &min(int n) { x = detail::geom_min(x, n); y = detail::geom_min(y, n); z = detail::geom_min(z, n); return *this; } ivec &max(int n) { x = detail::geom_max(x, n); y = detail::geom_max(y, n); z = detail::geom_max(z, n); return *this; } ivec &abs() { x = ::abs(x); y = ::abs(y); z = ::abs(z); return *this; } ivec &clamp(int l, int h) { x = detail::geom_clamp(x, l, h); y = detail::geom_clamp(y, l, h); z = detail::geom_clamp(z, l, h); return *this; } ivec &cross(const ivec &a, const ivec &b) { x = a.y*b.z-a.z*b.y; y = a.z*b.x-a.x*b.z; z = a.x*b.y-a.y*b.x; return *this; } int dot(const ivec &o) const { return x*o.x + y*o.y + z*o.z; } float dist(const plane &p) const { return x*p.x + y*p.y + z*p.z + p.offset; } static inline ivec floor(const vec &o) { return ivec(int(::floor(o.x)), int(::floor(o.y)), int(::floor(o.z))); } static inline ivec ceil(const vec &o) { return ivec(int(::ceil(o.x)), int(::ceil(o.y)), int(::ceil(o.z))); } }; inline vec::vec(const ivec &v) : x(v.x), y(v.y), z(v.z) {} static inline bool htcmp(const ivec &x, const ivec &y) { return x == y; } static inline unsigned int hthash(const ivec &k) { return k.x^k.y^k.z; } struct ivec2 { union { struct { int x, y; }; int v[2]; }; ivec2() {} ivec2(int x, int y) : x(x), y(y) {} explicit ivec2(const vec2 &v) : x(int(v.x)), y(int(v.y)) {} explicit ivec2(const ivec &v) : x(v.x), y(v.y) {} int &operator[](int i) { return v[i]; } int operator[](int i) const { return v[i]; } bool operator==(const ivec2 &o) const { return x == o.x && y == o.y; } bool operator!=(const ivec2 &o) const { return x != o.x || y != o.y; } bool iszero() const { return x==0 && y==0; } ivec2 &shl(int n) { x<<= n; y<<= n; return *this; } ivec2 &shr(int n) { x>>= n; y>>= n; return *this; } ivec2 &mul(int n) { x *= n; y *= n; return *this; } ivec2 &div(int n) { x /= n; y /= n; return *this; } ivec2 &add(int n) { x += n; y += n; return *this; } ivec2 &sub(int n) { x -= n; y -= n; return *this; } ivec2 &mul(const ivec2 &v) { x *= v.x; y *= v.y; return *this; } ivec2 &div(const ivec2 &v) { x /= v.x; y /= v.y; return *this; } ivec2 &add(const ivec2 &v) { x += v.x; y += v.y; return *this; } ivec2 &sub(const ivec2 &v) { x -= v.x; y -= v.y; return *this; } ivec2 &mask(int n) { x &= n; y &= n; return *this; } ivec2 &neg() { x = -x; y = -y; return *this; } ivec2 &min(const ivec2 &o) { x = detail::geom_min(x, o.x); y = detail::geom_min(y, o.y); return *this; } ivec2 &max(const ivec2 &o) { x = detail::geom_max(x, o.x); y = detail::geom_max(y, o.y); return *this; } ivec2 &min(int n) { x = detail::geom_min(x, n); y = detail::geom_min(y, n); return *this; } ivec2 &max(int n) { x = detail::geom_max(x, n); y = detail::geom_max(y, n); return *this; } ivec2 &abs() { x = ::abs(x); y = ::abs(y); return *this; } int dot(const ivec2 &o) const { return x*o.x + y*o.y; } int cross(const ivec2 &o) const { return x*o.y - y*o.x; } }; inline ivec::ivec(const ivec2 &v, int z) : x(v.x), y(v.y), z(z) {} static inline bool htcmp(const ivec2 &x, const ivec2 &y) { return x == y; } static inline unsigned int hthash(const ivec2 &k) { return k.x^k.y; } struct ivec4 { union { struct { int x, y, z, w; }; struct { int r, g, b, a; }; int v[4]; }; ivec4() {} explicit ivec4(const ivec &p, int w = 0) : x(p.x), y(p.y), z(p.z), w(w) {} ivec4(int x, int y, int z, int w) : x(x), y(y), z(z), w(w) {} explicit ivec4(const vec4 &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)), w(int(v.w)) {} bool operator==(const ivec4 &o) const { return x == o.x && y == o.y && z == o.z && w == o.w; } bool operator!=(const ivec4 &o) const { return x != o.x || y != o.y || z != o.z || w != o.w; } }; inline ivec::ivec(const ivec4 &v) : x(v.x), y(v.y), z(v.z) {} static inline bool htcmp(const ivec4 &x, const ivec4 &y) { return x == y; } static inline unsigned int hthash(const ivec4 &k) { return k.x^k.y^k.z^k.w; } struct bvec4; struct bvec { union { struct { unsigned char x, y, z; }; struct { unsigned char r, g, b; }; unsigned char v[3]; }; bvec() {} bvec(unsigned char x, unsigned char y, unsigned char z) : x(x), y(y), z(z) {} explicit bvec(const vec &v) : x(detail::uchar((v.x+1)*(255.0f/2.0f))), y(detail::uchar((v.y+1)*(255.0f/2.0f))), z(detail::uchar((v.z+1)*(255.0f/2.0f))) {} explicit bvec(const bvec4 &v); unsigned char &operator[](int i) { return v[i]; } unsigned char operator[](int i) const { return v[i]; } bool operator==(const bvec &v) const { return x==v.x && y==v.y && z==v.z; } bool operator!=(const bvec &v) const { return x!=v.x || y!=v.y || z!=v.z; } bool iszero() const { return x==0 && y==0 && z==0; } vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); } bvec &normalize() { vec n(x-127.5f, y-127.5f, z-127.5f); float mag = 127.5f/n.magnitude(); x = detail::uchar(n.x*mag+127.5f); y = detail::uchar(n.y*mag+127.5f); z = detail::uchar(n.z*mag+127.5f); return *this; } void lerp(const bvec &a, const bvec &b, float t) { x = detail::uchar(a.x + (b.x-a.x)*t); y = detail::uchar(a.y + (b.y-a.y)*t); z = detail::uchar(a.z + (b.z-a.z)*t); } void lerp(const bvec &a, const bvec &b, int ka, int kb, int d) { x = detail::uchar((a.x*ka + b.x*kb)/d); y = detail::uchar((a.y*ka + b.y*kb)/d); z = detail::uchar((a.z*ka + b.z*kb)/d); } void flip() { x ^= 0x80; y ^= 0x80; z ^= 0x80; } void scale(int k, int d) { x = detail::uchar((x*k)/d); y = detail::uchar((y*k)/d); z = detail::uchar((z*k)/d); } bvec &shl(int n) { x<<= n; y<<= n; z<<= n; return *this; } bvec &shr(int n) { x>>= n; y>>= n; z>>= n; return *this; } static bvec fromcolor(const vec &v) { return bvec(detail::uchar(v.x*255.0f), detail::uchar(v.y*255.0f), detail::uchar(v.z*255.0f)); } vec tocolor() const { return vec(x*(1.0f/255.0f), y*(1.0f/255.0f), z*(1.0f/255.0f)); } static bvec from565(detail::ushort c) { return bvec((((c>>11)&0x1F)*527 + 15) >> 6, (((c>>5)&0x3F)*259 + 35) >> 6, ((c&0x1F)*527 + 15) >> 6); } static bvec hexcolor(int color) { return bvec((color>>16)&0xFF, (color>>8)&0xFF, color&0xFF); } int tohexcolor() const { return (int(r)<<16)|(int(g)<<8)|int(b); } }; struct bvec4 { union { struct { unsigned char x, y, z, w; }; struct { unsigned char r, g, b, a; }; unsigned char v[4]; unsigned int mask; }; bvec4() {} bvec4(unsigned char x, unsigned char y, unsigned char z, unsigned char w = 0) : x(x), y(y), z(z), w(w) {} bvec4(const bvec &v, unsigned char w = 0) : x(v.x), y(v.y), z(v.z), w(w) {} unsigned char &operator[](int i) { return v[i]; } unsigned char operator[](int i) const { return v[i]; } bool operator==(const bvec4 &v) const { return mask==v.mask; } bool operator!=(const bvec4 &v) const { return mask!=v.mask; } bool iszero() const { return mask==0; } vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); } void lerp(const bvec4 &a, const bvec4 &b, float t) { x = detail::uchar(a.x + (b.x-a.x)*t); y = detail::uchar(a.y + (b.y-a.y)*t); z = detail::uchar(a.z + (b.z-a.z)*t); w = a.w; } void lerp(const bvec4 &a, const bvec4 &b, int ka, int kb, int d) { x = detail::uchar((a.x*ka + b.x*kb)/d); y = detail::uchar((a.y*ka + b.y*kb)/d); z = detail::uchar((a.z*ka + b.z*kb)/d); w = a.w; } void lerp(const bvec4 &a, const bvec4 &b, const bvec4 &c, float ta, float tb, float tc) { x = detail::uchar(a.x*ta + b.x*tb + c.x*tc); y = detail::uchar(a.y*ta + b.y*tb + c.y*tc); z = detail::uchar(a.z*ta + b.z*tb + c.z*tc); w = detail::uchar(a.w*ta + b.w*tb + c.w*tc); } void flip() { mask ^= 0x80808080; } }; inline bvec::bvec(const bvec4 &v) : x(v.x), y(v.y), z(v.z) {} struct usvec { union { struct { detail::ushort x, y, z; }; detail::ushort v[3]; }; detail::ushort &operator[](int i) { return v[i]; } detail::ushort operator[](int i) const { return v[i]; } }; inline vec::vec(const usvec &v) : x(v.x), y(v.y), z(v.z) {} inline ivec::ivec(const usvec &v) : x(v.x), y(v.y), z(v.z) {} struct svec { union { struct { short x, y, z; }; short v[3]; }; svec() {} svec(short x, short y, short z) : x(x), y(y), z(z) {} explicit svec(const ivec &v) : x(v.x), y(v.y), z(v.z) {} short &operator[](int i) { return v[i]; } short operator[](int i) const { return v[i]; } }; inline vec::vec(const svec &v) : x(v.x), y(v.y), z(v.z) {} inline ivec::ivec(const svec &v) : x(v.x), y(v.y), z(v.z) {} struct dvec4 { double x, y, z, w; dvec4() {} dvec4(double x, double y, double z, double w) : x(x), y(y), z(z), w(w) {} dvec4(const vec4 &v) : x(v.x), y(v.y), z(v.z), w(v.w) {} template dvec4 &madd(const dvec4 &a, const B &b) { return add(dvec4(a).mul(b)); } dvec4 &mul(double f) { x *= f; y *= f; z *= f; w *= f; return *this; } dvec4 &mul(const dvec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; } dvec4 &add(double f) { x += f; y += f; z += f; w += f; return *this; } dvec4 &add(const dvec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; } operator vec4() const { return vec4(x, y, z, w); } }; struct matrix4 { vec4 a, b, c, d; matrix4() {} matrix4(const float *m) : a(m), b(m+4), c(m+8), d(m+12) {} matrix4(const vec &a, const vec &b, const vec &c = vec(0, 0, 1)) : a(a.x, b.x, c.x, 0), b(a.y, b.y, c.y, 0), c(a.z, b.z, c.z, 0), d(0, 0, 0, 1) {} matrix4(const vec4 &a, const vec4 &b, const vec4 &c, const vec4 &d = vec4(0, 0, 0, 1)) : a(a), b(b), c(c), d(d) {} matrix4(const matrix4x3 &m) : a(m.a, 0), b(m.b, 0), c(m.c, 0), d(m.d, 1) {} matrix4(const matrix3 &rot, const vec &trans) : a(rot.a, 0), b(rot.b, 0), c(rot.c, 0), d(trans, 1) {} void mul(const matrix4 &x, const matrix3 &y) { a = vec4(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z); b = vec4(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z); c = vec4(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z); d = x.d; } void mul(const matrix3 &y) { mul(matrix4(*this), y); } template void mult(const matrix4 &x, const matrix4 &y) { a = T(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z).madd(x.d, y.a.w); b = T(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z).madd(x.d, y.b.w); c = T(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z).madd(x.d, y.c.w); d = T(x.a).mul(y.d.x).madd(x.b, y.d.y).madd(x.c, y.d.z).madd(x.d, y.d.w); } void mul(const matrix4 &x, const matrix4 &y) { mult(x, y); } void mul(const matrix4 &y) { mult(matrix4(*this), y); } void muld(const matrix4 &x, const matrix4 &y) { mult(x, y); } void muld(const matrix4 &y) { mult(matrix4(*this), y); } void rotate_around_x(float ck, float sk) { vec4 rb = vec4(b).mul(ck).madd(c, sk), rc = vec4(c).mul(ck).msub(b, sk); b = rb; c = rc; } void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } void rotate_around_y(float ck, float sk) { vec4 rc = vec4(c).mul(ck).madd(a, sk), ra = vec4(a).mul(ck).msub(c, sk); c = rc; a = ra; } void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } void rotate_around_z(float ck, float sk) { vec4 ra = vec4(a).mul(ck).madd(b, sk), rb = vec4(b).mul(ck).msub(a, sk); a = ra; b = rb; } void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } void rotate(float ck, float sk, const vec &axis) { matrix3 m; m.rotate(ck, sk, axis); mul(m); } void rotate(float angle, const vec &dir) { rotate(cosf(angle), sinf(angle), dir); } void rotate(const vec2 &sc, const vec &dir) { rotate(sc.x, sc.y, dir); } void identity() { a = vec4(1, 0, 0, 0); b = vec4(0, 1, 0, 0); c = vec4(0, 0, 1, 0); d = vec4(0, 0, 0, 1); } void settranslation(const vec &v) { d.setxyz(v); } void settranslation(float x, float y, float z) { d.x = x; d.y = y; d.z = z; } void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); } void translate(float x, float y, float z) { translate(vec(x, y, z)); } void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); } void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; } void setscale(const vec &v) { setscale(v.x, v.y, v.z); } void setscale(float n) { setscale(n, n, n); } void scale(float x, float y, float z) { a.mul(x); b.mul(y); c.mul(z); } void scale(const vec &v) { scale(v.x, v.y, v.z); } void scale(float n) { scale(n, n, n); } void scalexy(float x, float y) { a.x *= x; a.y *= y; b.x *= x; b.y *= y; c.x *= x; c.y *= y; d.x *= x; d.y *= y; } void scalez(float k) { a.z *= k; b.z *= k; c.z *= k; d.z *= k; } void reflectz(float z) { d.add(vec4(c).mul(2*z)); c.neg(); } void jitter(float x, float y) { a.x += x * a.w; a.y += y * a.w; b.x += x * b.w; b.y += y * b.w; c.x += x * c.w; c.y += y * c.w; d.x += x * d.w; d.y += y * d.w; } void transpose() { detail::geom_swap(a.y, b.x); detail::geom_swap(a.z, c.x); detail::geom_swap(a.w, d.x); detail::geom_swap(b.z, c.y); detail::geom_swap(b.w, d.y); detail::geom_swap(c.w, d.z); } void transpose(const matrix4 &m) { a = vec4(m.a.x, m.b.x, m.c.x, m.d.x); b = vec4(m.a.y, m.b.y, m.c.y, m.d.y); c = vec4(m.a.z, m.b.z, m.c.z, m.d.z); d = vec4(m.a.w, m.b.w, m.c.w, m.d.w); } void frustum(float left, float right, float bottom, float top, float znear, float zfar) { float width = right - left, height = top - bottom, zrange = znear - zfar; a = vec4(2*znear/width, 0, 0, 0); b = vec4(0, 2*znear/height, 0, 0); c = vec4((right + left)/width, (top + bottom)/height, (zfar + znear)/zrange, -1); d = vec4(0, 0, 2*znear*zfar/zrange, 0); } void perspective(float fovy, float aspect, float znear, float zfar) { float ydist = znear * tan(fovy/2*detail::GEOM_RAD), xdist = ydist * aspect; frustum(-xdist, xdist, -ydist, ydist, znear, zfar); } void ortho(float left, float right, float bottom, float top, float znear, float zfar) { float width = right - left, height = top - bottom, zrange = znear - zfar; a = vec4(2/width, 0, 0, 0); b = vec4(0, 2/height, 0, 0); c = vec4(0, 0, 2/zrange, 0); d = vec4(-(right+left)/width, -(top+bottom)/height, (zfar+znear)/zrange, 1); } void clip(const plane &p, const matrix4 &m) { float x = ((p.x<0 ? -1 : (p.x>0 ? 1 : 0)) + m.c.x) / m.a.x, y = ((p.y<0 ? -1 : (p.y>0 ? 1 : 0)) + m.c.y) / m.b.y, w = (1 + m.c.z) / m.d.z, scale = 2 / (x*p.x + y*p.y - p.z + w*p.offset); a = vec4(m.a.x, m.a.y, p.x*scale, m.a.w); b = vec4(m.b.x, m.b.y, p.y*scale, m.b.w); c = vec4(m.c.x, m.c.y, p.z*scale + 1.0f, m.c.w); d = vec4(m.d.x, m.d.y, p.offset*scale, m.d.w); } void transform(const vec &in, vec &out) const { out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d)); } void transform(const vec4 &in, vec &out) const { out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d).mul(in.w)); } void transform(const vec &in, vec4 &out) const { out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).add(d); } void transform(const vec4 &in, vec4 &out) const { out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).madd(d, in.w); } template T transform(const U &in) const { T v; transform(in, v); return v; } template vec perspectivetransform(const T &in) const { vec4 v; transform(in, v); return vec(v).div(v.w); } void transformnormal(const vec &in, vec &out) const { out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)); } void transformnormal(const vec &in, vec4 &out) const { out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z); } template T transformnormal(const U &in) const { T v; transformnormal(in, v); return v; } void transposedtransform(const vec &in, vec &out) const { vec p = vec(in).sub(vec(d)); out.x = a.dot3(p); out.y = b.dot3(p); out.z = c.dot3(p); } void transposedtransformnormal(const vec &in, vec &out) const { out.x = a.dot3(in); out.y = b.dot3(in); out.z = c.dot3(in); } void transposedtransform(const plane &in, plane &out) const { out.x = in.dist(a); out.y = in.dist(b); out.z = in.dist(c); out.offset = in.dist(d); } float getscale() const { return sqrtf(a.x*a.y + b.x*b.x + c.x*c.x); } vec gettranslation() const { return vec(d); } vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); } vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); } vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); } vec4 roww() const { return vec4(a.w, b.w, c.w, d.w); } bool invert(const matrix4 &m, double mindet = 1.0e-12); vec2 lineardepthscale() const { return vec2(d.w, -d.z).div(c.z*d.w - d.z*c.w); } }; inline matrix3::matrix3(const matrix4 &m) : a(m.a), b(m.b), c(m.c) {} inline matrix4x3::matrix4x3(const matrix4 &m) : a(m.a), b(m.b), c(m.c), d(m.d) {} struct matrix2 { vec2 a, b; matrix2() {} matrix2(const vec2 &a, const vec2 &b) : a(a), b(b) {} explicit matrix2(const matrix4 &m) : a(m.a), b(m.b) {} explicit matrix2(const matrix3 &m) : a(m.a), b(m.b) {} }; struct half { detail::ushort val; half() {} half(float f) { union { int i; float f; } conv; conv.f = f; detail::ushort signbit = (conv.i>>(31-15)) & (1<<15), mantissa = (conv.i>>(23-10)) & 0x3FF; int exponent = ((conv.i>>23)&0xFF) - 127 + 15; if(exponent <= 0) { mantissa |= 0x400; mantissa >>= detail::geom_min(1-exponent, 10+1); exponent = 0; } else if(exponent >= 0x1F) { mantissa = 0; exponent = 0x1F; } val = signbit | (detail::ushort(exponent)<<10) | mantissa; } bool operator==(const half &h) const { return val == h.val; } bool operator!=(const half &h) const { return val != h.val; } }; struct hvec2 { half x, y; hvec2() {} hvec2(float x, float y) : x(x), y(y) {} hvec2(const vec2 &v) : x(v.x), y(v.y) {} bool operator==(const hvec2 &h) const { return x == h.x && y == h.y; } bool operator!=(const hvec2 &h) const { return x != h.x || y != h.y; } }; struct hvec { half x, y, z; hvec() {} hvec(float x, float y, float z) : x(x), y(y), z(z) {} hvec(const vec &v) : x(v.x), y(v.y), z(v.z) {} bool operator==(const hvec &h) const { return x == h.x && y == h.y && z == h.z; } bool operator!=(const hvec &h) const { return x != h.x || y != h.y || z != h.z; } }; struct hvec4 { half x, y, z, w; hvec4() {} hvec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} hvec4(const vec &v, float w) : x(v.x), y(v.y), z(v.z), w(w) {} hvec4(const vec4 &v) : x(v.x), y(v.y), z(v.z), w(v.w) {} bool operator==(const hvec4 &h) const { return x == h.x && y == h.y && z == h.z && w == h.w; } bool operator!=(const hvec4 &h) const { return x != h.x || y != h.y || z != h.z || w != h.w; } }; struct squat { short x, y, z, w; squat() {} squat(const vec4 &q) { convert(q); } void convert(const vec4 &q) { x = short(q.x*32767.5f-0.5f); y = short(q.y*32767.5f-0.5f); z = short(q.z*32767.5f-0.5f); w = short(q.w*32767.5f-0.5f); } void lerp(const vec4 &a, const vec4 &b, float t) { vec4 q; q.lerp(a, b, t); convert(q); } }; extern bool raysphereintersect(const vec ¢er, float radius, const vec &o, const vec &ray, float &dist); extern bool rayboxintersect(const vec &b, const vec &s, const vec &o, const vec &ray, float &dist, int &orient); extern bool linecylinderintersect(const vec &from, const vec &to, const vec &start, const vec &end, float radius, float &dist); extern int polyclip(const vec *in, int numin, const vec &dir, float below, float above, vec *out); extern const vec2 sincos360[]; static inline int mod360(int angle) { if(angle < 0) angle = 360 + (angle <= -360 ? angle%360 : angle); else if(angle >= 360) angle %= 360; return angle; } static inline const vec2 &sincosmod360(int angle) { return sincos360[mod360(angle)]; } static inline float cos360(int angle) { return sincos360[angle].x; } static inline float sin360(int angle) { return sincos360[angle].y; } static inline float tan360(int angle) { const vec2 &sc = sincos360[angle]; return sc.y/sc.x; } static inline float cotan360(int angle) { const vec2 &sc = sincos360[angle]; return sc.x/sc.y; } #endif