OctaCore/src/engine/physics.cc

2015 lines
66 KiB
C++

// physics.cpp: no physics books were hurt nor consulted in the construction of this code.
// All physics computations and constants were invented on the fly and simply tweaked until
// they "felt right", and have no basis in reality. Collision detection is simplistic but
// very robust (uses discrete steps at fixed fps).
#include "physics.hh"
#include <cassert>
#include <algorithm>
#include <shared/command.hh>
#include <shared/igame.hh>
#include "console.hh" /* conoutf */
#include "ents.hh"
#include "main.hh" // player, timings
#include "rendergl.hh" // camera1
#include "rendermodel.hh"
#include "octa.hh"
#include "world.hh"
#include "mpr.hh"
const int MAXCLIPOFFSET = 4;
const int MAXCLIPPLANES = 1024;
static clipplanes clipcache[MAXCLIPPLANES];
static int clipcacheversion = -MAXCLIPOFFSET;
static inline clipplanes &getclipbounds(const cube &c, const ivec &o, int size, int offset)
{
clipplanes &p = clipcache[int(&c - worldroot)&(MAXCLIPPLANES-1)];
if(p.owner != &c || p.version != clipcacheversion+offset)
{
p.owner = &c;
p.version = clipcacheversion+offset;
genclipbounds(c, o, size, p);
}
return p;
}
static inline clipplanes &getclipbounds(const cube &c, const ivec &o, int size, physent *d)
{
int offset = !(c.visible&0x80) || d->type==ENT_PLAYER ? 0 : 1;
return getclipbounds(c, o, size, offset);
}
static inline int forceclipplanes(const cube &c, const ivec &o, int size, clipplanes &p)
{
if(p.visible&0x80)
{
bool collide = true, noclip = false;
if(p.version&1) { collide = false; noclip = true; }
genclipplanes(c, o, size, p, collide, noclip);
}
return p.visible;
}
static inline clipplanes &getclipplanes(const cube &c, const ivec &o, int size)
{
clipplanes &p = getclipbounds(c, o, size, c.visible&0x80 ? 2 : 0);
if(p.visible&0x80) genclipplanes(c, o, size, p, false, false);
return p;
}
void resetclipplanes()
{
clipcacheversion += MAXCLIPOFFSET;
if(!clipcacheversion)
{
memset(clipcache, 0, sizeof(clipcache));
clipcacheversion = MAXCLIPOFFSET;
}
}
///////////////////////// ray - cube collision ///////////////////////////////////////////////
#define INTERSECTPLANES(setentry, exit) \
float enterdist = -1e16f, exitdist = 1e16f; \
loopi(p.size) \
{ \
float pdist = p.p[i].dist(v), facing = ray.dot(p.p[i]); \
if(facing < 0) \
{ \
pdist /= -facing; \
if(pdist > enterdist) \
{ \
if(pdist > exitdist) exit; \
enterdist = pdist; \
setentry; \
} \
} \
else if(facing > 0) \
{ \
pdist /= -facing; \
if(pdist < exitdist) \
{ \
if(pdist < enterdist) exit; \
exitdist = pdist; \
} \
} \
else if(pdist > 0) exit; \
}
#define INTERSECTBOX(setentry, exit) \
loop(i, 3) \
{ \
if(ray[i]) \
{ \
float prad = fabs(p.r[i] * invray[i]), pdist = (p.o[i] - v[i]) * invray[i], pmin = pdist - prad, pmax = pdist + prad; \
if(pmin > enterdist) \
{ \
if(pmin > exitdist) exit; \
enterdist = pmin; \
setentry; \
} \
if(pmax < exitdist) \
{ \
if(pmax < enterdist) exit; \
exitdist = pmax; \
} \
} \
else if(v[i] < p.o[i]-p.r[i] || v[i] > p.o[i]+p.r[i]) exit; \
}
vec hitsurface; /* extern'd */
static inline bool raycubeintersect(const clipplanes &p, const cube &c, const vec &v, const vec &ray, const vec &invray, float maxdist, float &dist)
{
int entry = -1, bbentry = -1;
INTERSECTPLANES(entry = i, return false);
INTERSECTBOX(bbentry = i, return false);
if(exitdist < 0) return false;
dist = max(enterdist+0.1f, 0.0f);
if(dist < maxdist)
{
if(bbentry>=0) { hitsurface = vec(0, 0, 0); hitsurface[bbentry] = ray[bbentry]>0 ? -1 : 1; }
else hitsurface = p.p[entry];
}
return true;
}
static float hitentdist;
static int hitent, hitorient;
static float disttoent(octaentities *oc, const vec &o, const vec &ray, float radius, int mode, extentity *t)
{
vec eo, es;
int orient = -1;
float dist = radius, f = 0.0f;
const vector<extentity *> &ents = entities::getents();
#define entintersect(type, func) do { \
loopv(oc->type) \
{ \
extentity &e = *ents[oc->type[i]]; \
if(!(e.flags&EF_OCTA) || &e==t) continue; \
func; \
if(f<dist && f>0 && vec(ray).mul(f).add(o).insidebb(oc->o, oc->size)) \
{ \
hitentdist = dist = f; \
hitent = oc->type[i]; \
hitorient = orient; \
} \
} \
} while(0)
if((mode&RAY_POLY) == RAY_POLY) entintersect(mapmodels,
{
if(!mmintersect(e, o, ray, radius, mode, f)) continue;
});
#define entselintersect(type) entintersect(type, { \
entselectionbox(e, eo, es); \
if(!rayboxintersect(eo, es, o, ray, f, orient)) continue; \
})
if((mode&RAY_ENTS) == RAY_ENTS)
{
entselintersect(other);
entselintersect(mapmodels);
entselintersect(decals);
}
return dist;
}
static float disttooutsideent(const vec &o, const vec &ray, float radius, int mode, extentity *t)
{
vec eo, es;
int orient;
float dist = radius, f = 0.0f;
const vector<extentity *> &ents = entities::getents();
loopv(outsideents)
{
extentity &e = *ents[outsideents[i]];
if(!(e.flags&EF_OCTA) || &e == t) continue;
entselectionbox(e, eo, es);
if(!rayboxintersect(eo, es, o, ray, f, orient)) continue;
if(f<dist && f>0)
{
hitentdist = dist = f;
hitent = outsideents[i];
hitorient = orient;
}
}
return dist;
}
#define INITRAYCUBE \
float dist = 0, dent = radius > 0 ? radius : 1e16f; \
vec v(o), invray(ray.x ? 1/ray.x : 1e16f, ray.y ? 1/ray.y : 1e16f, ray.z ? 1/ray.z : 1e16f); \
cube *levels[20]; \
levels[worldscale] = worldroot; \
int lshift = worldscale, elvl = mode&RAY_BB ? worldscale : 0; \
ivec lsizemask(invray.x>0 ? 1 : 0, invray.y>0 ? 1 : 0, invray.z>0 ? 1 : 0); \
#define CHECKINSIDEWORLD \
if(!insideworld(o)) \
{ \
float disttoworld = 0, exitworld = 1e16f; \
loopi(3) \
{ \
float c = v[i]; \
if(c<0 || c>=worldsize) \
{ \
float d = ((invray[i]>0?0:worldsize)-c)*invray[i]; \
if(d<0) return (radius>0?radius:-1); \
disttoworld = max(disttoworld, 0.1f + d); \
} \
float e = ((invray[i]>0?worldsize:0)-c)*invray[i]; \
exitworld = min(exitworld, e); \
} \
if(disttoworld > exitworld) return (radius>0?radius:-1); \
v.add(vec(ray).mul(disttoworld)); \
dist += disttoworld; \
}
#define DOWNOCTREE(disttoent) \
cube *lc = levels[lshift]; \
for(;;) \
{ \
lshift--; \
lc += octastep(x, y, z, lshift); \
if(lc->ext && lc->ext->ents && lshift < elvl) \
{ \
float edist = disttoent(lc->ext->ents, o, ray, dent, mode, t); \
if(edist < dent) \
{ \
elvl = lshift; \
dent = min(dent, edist); \
} \
} \
if(lc->children==nullptr) break; \
lc = lc->children; \
levels[lshift] = lc; \
}
#define FINDCLOSEST(xclosest, yclosest, zclosest) \
float dx = (lo.x+(lsizemask.x<<lshift)-v.x)*invray.x, \
dy = (lo.y+(lsizemask.y<<lshift)-v.y)*invray.y, \
dz = (lo.z+(lsizemask.z<<lshift)-v.z)*invray.z; \
float disttonext = dx; \
xclosest; \
if(dy < disttonext) { disttonext = dy; yclosest; } \
if(dz < disttonext) { disttonext = dz; zclosest; } \
disttonext += 0.1f; \
v.add(vec(ray).mul(disttonext)); \
dist += disttonext;
#define UPOCTREE(exitworld) \
x = int(v.x); \
y = int(v.y); \
z = int(v.z); \
uint diff = uint(lo.x^x)|uint(lo.y^y)|uint(lo.z^z); \
if(diff >= uint(worldsize)) exitworld; \
diff >>= lshift; \
if(!diff) exitworld; \
do \
{ \
lshift++; \
diff >>= 1; \
} while(diff);
float raycube(const vec &o, const vec &ray, float radius, int mode, int size, extentity *t)
{
if(ray.iszero()) return 0;
INITRAYCUBE;
CHECKINSIDEWORLD;
int closest = -1, x = int(v.x), y = int(v.y), z = int(v.z);
for(;;)
{
DOWNOCTREE(disttoent);
int lsize = 1<<lshift;
cube &c = *lc;
if((dist>0 || !(mode&RAY_SKIPFIRST)) &&
(((mode&RAY_CLIPMAT) && isclipped(c.material&MATF_VOLUME)) ||
((mode&RAY_EDITMAT) && c.material != MAT_AIR) ||
(!(mode&RAY_PASS) && lsize==size && !isempty(c)) ||
isentirelysolid(c) ||
dent < dist) &&
(!(mode&RAY_CLIPMAT) || (c.material&MATF_CLIP)!=MAT_NOCLIP))
{
if(dist < dent)
{
if(closest < 0)
{
float dx = ((x&(~0U<<lshift))+(invray.x>0 ? 0 : 1<<lshift)-v.x)*invray.x,
dy = ((y&(~0U<<lshift))+(invray.y>0 ? 0 : 1<<lshift)-v.y)*invray.y,
dz = ((z&(~0U<<lshift))+(invray.z>0 ? 0 : 1<<lshift)-v.z)*invray.z;
closest = dx > dy ? (dx > dz ? 0 : 2) : (dy > dz ? 1 : 2);
}
hitsurface = vec(0, 0, 0);
hitsurface[closest] = ray[closest]>0 ? -1 : 1;
return dist;
}
return dent;
}
ivec lo(x&(~0U<<lshift), y&(~0U<<lshift), z&(~0U<<lshift));
if(!isempty(c))
{
const clipplanes &p = getclipplanes(c, lo, lsize);
float f = 0;
if(raycubeintersect(p, c, v, ray, invray, dent-dist, f) && (dist+f>0 || !(mode&RAY_SKIPFIRST)) && (!(mode&RAY_CLIPMAT) || (c.material&MATF_CLIP)!=MAT_NOCLIP))
return min(dent, dist+f);
}
FINDCLOSEST(closest = 0, closest = 1, closest = 2);
if(radius>0 && dist>=radius) return min(dent, dist);
UPOCTREE(return min(dent, radius>0 ? radius : dist));
}
}
float rayent(const vec &o, const vec &ray, float radius, int mode, int size, int &orient, int &ent)
{
hitent = -1;
hitentdist = radius;
hitorient = -1;
float dist = raycube(o, ray, radius, mode, size);
if((mode&RAY_ENTS) == RAY_ENTS)
{
float dent = disttooutsideent(o, ray, dist < 0 ? 1e16f : dist, mode, nullptr);
if(dent < 1e15f && (dist < 0 || dent < dist)) dist = dent;
}
orient = hitorient;
ent = hitentdist == dist ? hitent : -1;
return dist;
}
float raycubepos(const vec &o, const vec &ray, vec &hitpos, float radius, int mode, int size)
{
hitpos = ray;
float dist = raycube(o, ray, radius, mode, size);
if(radius>0 && dist>=radius) dist = radius;
hitpos.mul(dist).add(o);
return dist;
}
bool raycubelos(const vec &o, const vec &dest, vec &hitpos)
{
vec ray(dest);
ray.sub(o);
float mag = ray.magnitude();
ray.mul(1/mag);
float distance = raycubepos(o, ray, hitpos, mag, RAY_CLIPMAT|RAY_POLY);
return distance >= mag;
}
float rayfloor(const vec &o, vec &floor, int mode, float radius)
{
if(o.z<=0) return -1;
hitsurface = vec(0, 0, 1);
float dist = raycube(o, vec(0, 0, -1), radius, mode);
if(dist<0 || (radius>0 && dist>=radius)) return dist;
floor = hitsurface;
return dist;
}
///////////////////////// entity collision ///////////////////////////////////////////////
// info about collisions
int collideinside; // whether an internal collision happened
physent *collideplayer; // whether the collection hit a player
vec collidewall; // just the normal vectors.
const float STAIRHEIGHT = 4.1f;
const float FLOORZ = 0.867f;
const float SLOPEZ = 0.5f;
const float WALLZ = 0.2f;
extern const float JUMPVEL = 125.0f;
extern const float GRAVITY = 200.0f;
static bool ellipseboxcollide(physent *d, const vec &dir, const vec &o, const vec &center, float yaw, float xr, float yr, float hi, float lo)
{
float below = (o.z+center.z-lo) - (d->o.z+d->aboveeye),
above = (d->o.z-d->eyeheight) - (o.z+center.z+hi);
if(below>=0 || above>=0) return false;
vec yo(d->o);
yo.sub(o);
yo.rotate_around_z(-yaw*RAD);
yo.sub(center);
float dx = std::clamp(yo.x, -xr, xr) - yo.x, dy = std::clamp(yo.y, -yr, yr) - yo.y,
dist = sqrtf(dx*dx + dy*dy) - d->radius;
if(dist < 0)
{
int sx = yo.x <= -xr ? -1 : (yo.x >= xr ? 1 : 0),
sy = yo.y <= -yr ? -1 : (yo.y >= yr ? 1 : 0);
if(dist > (yo.z < 0 ? below : above) && (sx || sy))
{
vec ydir(dir);
ydir.rotate_around_z(-yaw*RAD);
if(sx*yo.x - xr > sy*yo.y - yr)
{
if(dir.iszero() || sx*ydir.x < -1e-6f)
{
collidewall = vec(sx, 0, 0);
collidewall.rotate_around_z(yaw*RAD);
return true;
}
}
else if(dir.iszero() || sy*ydir.y < -1e-6f)
{
collidewall = vec(0, sy, 0);
collidewall.rotate_around_z(yaw*RAD);
return true;
}
}
if(yo.z < 0)
{
if(dir.iszero() || (dir.z > 0 && (d->type!=ENT_PLAYER || below >= d->zmargin-(d->eyeheight+d->aboveeye)/4.0f)))
{
collidewall = vec(0, 0, -1);
return true;
}
}
else if(dir.iszero() || (dir.z < 0 && (d->type!=ENT_PLAYER || above >= d->zmargin-(d->eyeheight+d->aboveeye)/3.0f)))
{
collidewall = vec(0, 0, 1);
return true;
}
collideinside++;
}
return false;
}
static bool ellipsecollide(physent *d, const vec &dir, const vec &o, const vec &center, float yaw, float xr, float yr, float hi, float lo)
{
float below = (o.z+center.z-lo) - (d->o.z+d->aboveeye),
above = (d->o.z-d->eyeheight) - (o.z+center.z+hi);
if(below>=0 || above>=0) return false;
vec yo(center);
yo.rotate_around_z(yaw*RAD);
yo.add(o);
float x = yo.x - d->o.x, y = yo.y - d->o.y;
float angle = atan2f(y, x), dangle = angle-d->yaw*RAD, eangle = angle-yaw*RAD;
float dx = d->xradius*cosf(dangle), dy = d->yradius*sinf(dangle);
float ex = xr*cosf(eangle), ey = yr*sinf(eangle);
float dist = sqrtf(x*x + y*y) - sqrtf(dx*dx + dy*dy) - sqrtf(ex*ex + ey*ey);
if(dist < 0)
{
if(dist > (d->o.z < yo.z ? below : above) && (dir.iszero() || x*dir.x + y*dir.y > 0))
{
collidewall = vec(-x, -y, 0).rescale(1);
return true;
}
if(d->o.z < yo.z)
{
if(dir.iszero() || (dir.z > 0 && (d->type!=ENT_PLAYER || below >= d->zmargin-(d->eyeheight+d->aboveeye)/4.0f)))
{
collidewall = vec(0, 0, -1);
return true;
}
}
else if(dir.iszero() || (dir.z < 0 && (d->type!=ENT_PLAYER || above >= d->zmargin-(d->eyeheight+d->aboveeye)/3.0f)))
{
collidewall = vec(0, 0, 1);
return true;
}
collideinside++;
}
return false;
}
#define DYNENTCACHESIZE 1024
static uint dynentframe = 0;
static struct dynentcacheentry
{
int x, y;
uint frame;
vector<physent *> dynents;
} dynentcache[DYNENTCACHESIZE];
void cleardynentcache()
{
dynentframe++;
if(!dynentframe || dynentframe == 1) loopi(DYNENTCACHESIZE) dynentcache[i].frame = 0;
if(!dynentframe) dynentframe = 1;
}
VARF(dynentsize, 4, 7, 12, cleardynentcache());
#define DYNENTHASH(x, y) (((((x)^(y))<<5) + (((x)^(y))>>5)) & (DYNENTCACHESIZE - 1))
static const vector<physent *> &checkdynentcache(int x, int y)
{
dynentcacheentry &dec = dynentcache[DYNENTHASH(x, y)];
if(dec.x == x && dec.y == y && dec.frame == dynentframe) return dec.dynents;
dec.x = x;
dec.y = y;
dec.frame = dynentframe;
dec.dynents.shrink(0);
int numdyns = game::numdynents(), dsize = 1<<dynentsize, dx = x<<dynentsize, dy = y<<dynentsize;
loopi(numdyns)
{
dynent *d = game::iterdynents(i);
if(d->state != CS_ALIVE ||
d->o.x+d->radius <= dx || d->o.x-d->radius >= dx+dsize ||
d->o.y+d->radius <= dy || d->o.y-d->radius >= dy+dsize)
continue;
dec.dynents.add(d);
}
return dec.dynents;
}
#define loopdynentcache(curx, cury, o, radius) \
for(int curx = max(int(o.x-radius), 0)>>dynentsize, endx = min(int(o.x+radius), worldsize-1)>>dynentsize; curx <= endx; curx++) \
for(int cury = max(int(o.y-radius), 0)>>dynentsize, endy = min(int(o.y+radius), worldsize-1)>>dynentsize; cury <= endy; cury++)
void updatedynentcache(physent *d)
{
loopdynentcache(x, y, d->o, d->radius)
{
dynentcacheentry &dec = dynentcache[DYNENTHASH(x, y)];
if(dec.x != x || dec.y != y || dec.frame != dynentframe || dec.dynents.find(d) >= 0) continue;
dec.dynents.add(d);
}
}
bool overlapsdynent(const vec &o, float radius)
{
loopdynentcache(x, y, o, radius)
{
const vector<physent *> &dynents = checkdynentcache(x, y);
loopv(dynents)
{
physent *d = dynents[i];
if(o.dist(d->o)-d->radius < radius) return true;
}
}
return false;
}
template<class E, class O>
static inline bool plcollide(physent *d, const vec &dir, physent *o)
{
E entvol(d);
O obvol(o);
vec cp;
if(mpr::collide(entvol, obvol, nullptr, nullptr, &cp))
{
vec wn = vec(cp).sub(obvol.center());
collidewall = obvol.contactface(wn, dir.iszero() ? vec(wn).neg() : dir);
if(!collidewall.iszero()) return true;
collideinside++;
}
return false;
}
static inline bool plcollide(physent *d, const vec &dir, physent *o)
{
switch(d->collidetype)
{
case COLLIDE_ELLIPSE:
if(o->collidetype == COLLIDE_ELLIPSE) return ellipsecollide(d, dir, o->o, vec(0, 0, 0), o->yaw, o->xradius, o->yradius, o->aboveeye, o->eyeheight);
else return ellipseboxcollide(d, dir, o->o, vec(0, 0, 0), o->yaw, o->xradius, o->yradius, o->aboveeye, o->eyeheight);
case COLLIDE_OBB:
if(o->collidetype == COLLIDE_ELLIPSE) return plcollide<mpr::EntOBB, mpr::EntCylinder>(d, dir, o);
else return plcollide<mpr::EntOBB, mpr::EntOBB>(d, dir, o);
default: return false;
}
}
static bool plcollide(physent *d, const vec &dir, bool insideplayercol) // collide with player
{
if(d->type==ENT_CAMERA || d->state!=CS_ALIVE) return false;
int lastinside = collideinside;
physent *insideplayer = nullptr;
loopdynentcache(x, y, d->o, d->radius)
{
const vector<physent *> &dynents = checkdynentcache(x, y);
loopv(dynents)
{
physent *o = dynents[i];
if(o==d || d->o.reject(o->o, d->radius+o->radius)) continue;
if(plcollide(d, dir, o))
{
collideplayer = o;
game::dynentcollide(d, o, collidewall);
return true;
}
if(collideinside > lastinside)
{
lastinside = collideinside;
insideplayer = o;
}
}
}
if(insideplayer && insideplayercol)
{
collideplayer = insideplayer;
game::dynentcollide(d, insideplayer, vec(0, 0, 0));
return true;
}
return false;
}
void rotatebb(vec &center, vec &radius, int yaw, int pitch, int roll)
{
matrix3 orient;
orient.identity();
if(yaw) orient.rotate_around_z(sincosmod360(yaw));
if(pitch) orient.rotate_around_x(sincosmod360(pitch));
if(roll) orient.rotate_around_y(sincosmod360(-roll));
center = orient.transform(center);
radius = orient.abstransform(radius);
}
template<class E, class M>
static inline bool mmcollide(physent *d, const vec &dir, const extentity &e, const vec &center, const vec &radius, int yaw, int pitch, int roll)
{
E entvol(d);
M mdlvol(e.o, center, radius, yaw, pitch, roll);
vec cp;
if(mpr::collide(entvol, mdlvol, nullptr, nullptr, &cp))
{
vec wn = vec(cp).sub(mdlvol.center());
collidewall = mdlvol.contactface(wn, dir.iszero() ? vec(wn).neg() : dir);
if(!collidewall.iszero()) return true;
collideinside++;
}
return false;
}
template<class E>
static bool fuzzycollidebox(physent *d, const vec &dir, float cutoff, const vec &o, const vec &center, const vec &radius, int yaw, int pitch, int roll)
{
mpr::ModelOBB mdlvol(o, center, radius, yaw, pitch, roll);
vec bbradius = mdlvol.orient.abstransposedtransform(radius);
if(fabs(d->o.x - mdlvol.o.x) > bbradius.x + d->radius || fabs(d->o.y - mdlvol.o.y) > bbradius.y + d->radius ||
d->o.z + d->aboveeye < mdlvol.o.z - bbradius.z || d->o.z - d->eyeheight > mdlvol.o.z + bbradius.z)
return false;
E entvol(d);
collidewall = vec(0, 0, 0);
float bestdist = -1e10f;
loopi(6)
{
vec w;
float dist;
switch(i)
{
default:
case 0: w = mdlvol.orient.rowx().neg(); dist = -radius.x; break;
case 1: w = mdlvol.orient.rowx(); dist = -radius.x; break;
case 2: w = mdlvol.orient.rowy().neg(); dist = -radius.y; break;
case 3: w = mdlvol.orient.rowy(); dist = -radius.y; break;
case 4: w = mdlvol.orient.rowz().neg(); dist = -radius.z; break;
case 5: w = mdlvol.orient.rowz(); dist = -radius.z; break;
}
vec pw = entvol.supportpoint(vec(w).neg());
dist += w.dot(vec(pw).sub(mdlvol.o));
if(dist >= 0) return false;
if(dist <= bestdist) continue;
collidewall = vec(0, 0, 0);
bestdist = dist;
if(!dir.iszero())
{
if(w.dot(dir) >= -cutoff*dir.magnitude()) continue;
if(d->type==ENT_PLAYER &&
dist < (dir.z*w.z < 0 ?
d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) :
(dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0)))
continue;
}
collidewall = w;
}
if(collidewall.iszero())
{
collideinside++;
return false;
}
return true;
}
template<class E>
static bool fuzzycollideellipse(physent *d, const vec &dir, float cutoff, const vec &o, const vec &center, const vec &radius, int yaw, int pitch, int roll)
{
mpr::ModelEllipse mdlvol(o, center, radius, yaw, pitch, roll);
vec bbradius = mdlvol.orient.abstransposedtransform(radius);
if(fabs(d->o.x - mdlvol.o.x) > bbradius.x + d->radius || fabs(d->o.y - mdlvol.o.y) > bbradius.y + d->radius ||
d->o.z + d->aboveeye < mdlvol.o.z - bbradius.z || d->o.z - d->eyeheight > mdlvol.o.z + bbradius.z)
return false;
E entvol(d);
collidewall = vec(0, 0, 0);
float bestdist = -1e10f;
loopi(3)
{
vec w;
float dist;
switch(i)
{
default:
case 0: w = mdlvol.orient.rowz(); dist = -radius.z; break;
case 1: w = mdlvol.orient.rowz().neg(); dist = -radius.z; break;
case 2:
{
vec2 ln(mdlvol.orient.transform(entvol.center().sub(mdlvol.o)));
float r = ln.magnitude();
if(r < 1e-6f) continue;
vec2 lw = vec2(ln.x*radius.y, ln.y*radius.x).normalize();
w = mdlvol.orient.transposedtransform(lw);
dist = -vec2(ln.x*radius.x, ln.y*radius.y).dot(lw)/r;
break;
}
}
vec pw = entvol.supportpoint(vec(w).neg());
dist += w.dot(vec(pw).sub(mdlvol.o));
if(dist >= 0) return false;
if(dist <= bestdist) continue;
collidewall = vec(0, 0, 0);
bestdist = dist;
if(!dir.iszero())
{
if(w.dot(dir) >= -cutoff*dir.magnitude()) continue;
if(d->type==ENT_PLAYER &&
dist < (dir.z*w.z < 0 ?
d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) :
(dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0)))
continue;
}
collidewall = w;
}
if(collidewall.iszero())
{
collideinside++;
return false;
}
return true;
}
VAR(testtricol, 0, 0, 2);
static bool mmcollide(physent *d, const vec &dir, float cutoff, octaentities &oc) // collide with a mapmodel
{
const vector<extentity *> &ents = entities::getents();
loopv(oc.mapmodels)
{
extentity &e = *ents[oc.mapmodels[i]];
if(e.flags&EF_NOCOLLIDE || !mapmodels.inrange(e.attr1)) continue;
mapmodelinfo &mmi = mapmodels[e.attr1];
model *m = mmi.collide;
if(!m)
{
if(!mmi.m && !loadmodel(nullptr, e.attr1)) continue;
if(mmi.m->collidemodel) m = loadmodel(mmi.m->collidemodel);
if(!m) m = mmi.m;
mmi.collide = m;
}
int mcol = mmi.m->collide;
if(!mcol) continue;
vec center, radius;
float rejectradius = m->collisionbox(center, radius), scale = e.attr5 > 0 ? e.attr5/100.0f : 1;
if(d->o.reject(e.o, d->radius + rejectradius*scale)) continue;
int yaw = e.attr2, pitch = e.attr3, roll = e.attr4;
if(mcol == COLLIDE_TRI || testtricol)
{
if(!m->bih && !m->setBIH()) continue;
switch(testtricol ? testtricol : d->collidetype)
{
case COLLIDE_ELLIPSE:
if(m->bih->ellipsecollide(d, dir, cutoff, e.o, yaw, pitch, roll, scale)) return true;
break;
case COLLIDE_OBB:
if(m->bih->boxcollide(d, dir, cutoff, e.o, yaw, pitch, roll, scale)) return true;
break;
default: continue;
}
}
else
{
radius.mul(scale);
switch(d->collidetype)
{
case COLLIDE_ELLIPSE:
if(mcol == COLLIDE_ELLIPSE)
{
if(pitch || roll)
{
if(fuzzycollideellipse<mpr::EntCapsule>(d, dir, cutoff, e.o, center, radius, yaw, pitch, roll)) return true;
}
else if(ellipsecollide(d, dir, e.o, center, yaw, radius.x, radius.y, radius.z, radius.z)) return true;
}
else if(pitch || roll)
{
if(fuzzycollidebox<mpr::EntCapsule>(d, dir, cutoff, e.o, center, radius, yaw, pitch, roll)) return true;
}
else if(ellipseboxcollide(d, dir, e.o, center, yaw, radius.x, radius.y, radius.z, radius.z)) return true;
break;
case COLLIDE_OBB:
if(mcol == COLLIDE_ELLIPSE)
{
if(mmcollide<mpr::EntOBB, mpr::ModelEllipse>(d, dir, e, center, radius, yaw, pitch, roll)) return true;
}
else if(mmcollide<mpr::EntOBB, mpr::ModelOBB>(d, dir, e, center, radius, yaw, pitch, roll)) return true;
break;
default: continue;
}
}
}
return false;
}
template<class E>
static bool fuzzycollidesolid(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with solid cube geometry
{
int crad = size/2;
if(fabs(d->o.x - co.x - crad) > d->radius + crad || fabs(d->o.y - co.y - crad) > d->radius + crad ||
d->o.z + d->aboveeye < co.z || d->o.z - d->eyeheight > co.z + size)
return false;
collidewall = vec(0, 0, 0);
float bestdist = -1e10f;
int visible = !(c.visible&0x80) || d->type==ENT_PLAYER ? c.visible : 0xFF;
#define CHECKSIDE(side, distval, dotval, margin, normal) if(visible&(1<<side)) do \
{ \
float dist = distval; \
if(dist > 0) return false; \
if(dist <= bestdist) continue; \
if(!dir.iszero()) \
{ \
if(dotval >= -cutoff*dir.magnitude()) continue; \
if(d->type==ENT_PLAYER && dotval < 0 && dist < margin) continue; \
} \
collidewall = normal; \
bestdist = dist; \
} while(0)
CHECKSIDE(O_LEFT, co.x - (d->o.x + d->radius), -dir.x, -d->radius, vec(-1, 0, 0));
CHECKSIDE(O_RIGHT, d->o.x - d->radius - (co.x + size), dir.x, -d->radius, vec(1, 0, 0));
CHECKSIDE(O_BACK, co.y - (d->o.y + d->radius), -dir.y, -d->radius, vec(0, -1, 0));
CHECKSIDE(O_FRONT, d->o.y - d->radius - (co.y + size), dir.y, -d->radius, vec(0, 1, 0));
CHECKSIDE(O_BOTTOM, co.z - (d->o.z + d->aboveeye), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1));
CHECKSIDE(O_TOP, d->o.z - d->eyeheight - (co.z + size), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1));
if(collidewall.iszero())
{
collideinside++;
return false;
}
return true;
}
template<class E>
static inline bool clampcollide(const clipplanes &p, const E &entvol, const plane &w, const vec &pw)
{
if(w.x && (w.y || w.z) && fabs(pw.x - p.o.x) > p.r.x)
{
vec c = entvol.center();
float fv = pw.x < p.o.x ? p.o.x-p.r.x : p.o.x+p.r.x, fdist = (w.x*fv + w.y*c.y + w.z*c.z + w.offset) / (w.y*w.y + w.z*w.z);
vec fdir(fv - c.x, -w.y*fdist, -w.z*fdist);
if((pw.y-c.y-fdir.y)*w.y + (pw.z-c.z-fdir.z)*w.z >= 0 && entvol.supportpoint(fdir).squaredist(c) < fdir.squaredlen()) return true;
}
if(w.y && (w.x || w.z) && fabs(pw.y - p.o.y) > p.r.y)
{
vec c = entvol.center();
float fv = pw.y < p.o.y ? p.o.y-p.r.y : p.o.y+p.r.y, fdist = (w.x*c.x + w.y*fv + w.z*c.z + w.offset) / (w.x*w.x + w.z*w.z);
vec fdir(-w.x*fdist, fv - c.y, -w.z*fdist);
if((pw.x-c.x-fdir.x)*w.x + (pw.z-c.z-fdir.z)*w.z >= 0 && entvol.supportpoint(fdir).squaredist(c) < fdir.squaredlen()) return true;
}
if(w.z && (w.x || w.y) && fabs(pw.z - p.o.z) > p.r.z)
{
vec c = entvol.center();
float fv = pw.z < p.o.z ? p.o.z-p.r.z : p.o.z+p.r.z, fdist = (w.x*c.x + w.y*c.y + w.z*fv + w.offset) / (w.x*w.x + w.y*w.y);
vec fdir(-w.x*fdist, -w.y*fdist, fv - c.z);
if((pw.x-c.x-fdir.x)*w.x + (pw.y-c.y-fdir.y)*w.y >= 0 && entvol.supportpoint(fdir).squaredist(c) < fdir.squaredlen()) return true;
}
return false;
}
template<class E>
static bool fuzzycollideplanes(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with deformed cube geometry
{
clipplanes &p = getclipbounds(c, co, size, d);
if(fabs(d->o.x - p.o.x) > p.r.x + d->radius || fabs(d->o.y - p.o.y) > p.r.y + d->radius ||
d->o.z + d->aboveeye < p.o.z - p.r.z || d->o.z - d->eyeheight > p.o.z + p.r.z)
return false;
collidewall = vec(0, 0, 0);
float bestdist = -1e10f;
int visible = forceclipplanes(c, co, size, p);
CHECKSIDE(O_LEFT, p.o.x - p.r.x - (d->o.x + d->radius), -dir.x, -d->radius, vec(-1, 0, 0));
CHECKSIDE(O_RIGHT, d->o.x - d->radius - (p.o.x + p.r.x), dir.x, -d->radius, vec(1, 0, 0));
CHECKSIDE(O_BACK, p.o.y - p.r.y - (d->o.y + d->radius), -dir.y, -d->radius, vec(0, -1, 0));
CHECKSIDE(O_FRONT, d->o.y - d->radius - (p.o.y + p.r.y), dir.y, -d->radius, vec(0, 1, 0));
CHECKSIDE(O_BOTTOM, p.o.z - p.r.z - (d->o.z + d->aboveeye), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1));
CHECKSIDE(O_TOP, d->o.z - d->eyeheight - (p.o.z + p.r.z), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1));
E entvol(d);
int bestplane = -1;
loopi(p.size)
{
const plane &w = p.p[i];
vec pw = entvol.supportpoint(vec(w).neg());
float dist = w.dist(pw);
if(dist >= 0) return false;
if(dist <= bestdist) continue;
bestplane = -1;
bestdist = dist;
if(!dir.iszero())
{
if(w.dot(dir) >= -cutoff*dir.magnitude()) continue;
if(d->type==ENT_PLAYER &&
dist < (dir.z*w.z < 0 ?
d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) :
(dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0)))
continue;
}
if(clampcollide(p, entvol, w, pw)) continue;
bestplane = i;
}
if(bestplane >= 0) collidewall = p.p[bestplane];
else if(collidewall.iszero())
{
collideinside++;
return false;
}
return true;
}
template<class E>
static bool cubecollidesolid(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with solid cube geometry
{
int crad = size/2;
if(fabs(d->o.x - co.x - crad) > d->radius + crad || fabs(d->o.y - co.y - crad) > d->radius + crad ||
d->o.z + d->aboveeye < co.z || d->o.z - d->eyeheight > co.z + size)
return false;
E entvol(d);
bool collided = mpr::collide(mpr::SolidCube(co, size), entvol);
if(!collided) return false;
collidewall = vec(0, 0, 0);
float bestdist = -1e10f;
int visible = !(c.visible&0x80) || d->type==ENT_PLAYER ? c.visible : 0xFF;
CHECKSIDE(O_LEFT, co.x - entvol.right(), -dir.x, -d->radius, vec(-1, 0, 0));
CHECKSIDE(O_RIGHT, entvol.left() - (co.x + size), dir.x, -d->radius, vec(1, 0, 0));
CHECKSIDE(O_BACK, co.y - entvol.front(), -dir.y, -d->radius, vec(0, -1, 0));
CHECKSIDE(O_FRONT, entvol.back() - (co.y + size), dir.y, -d->radius, vec(0, 1, 0));
CHECKSIDE(O_BOTTOM, co.z - entvol.top(), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1));
CHECKSIDE(O_TOP, entvol.bottom() - (co.z + size), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1));
if(collidewall.iszero())
{
collideinside++;
return false;
}
return true;
}
template<class E>
static bool cubecollideplanes(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size) // collide with deformed cube geometry
{
clipplanes &p = getclipbounds(c, co, size, d);
if(fabs(d->o.x - p.o.x) > p.r.x + d->radius || fabs(d->o.y - p.o.y) > p.r.y + d->radius ||
d->o.z + d->aboveeye < p.o.z - p.r.z || d->o.z - d->eyeheight > p.o.z + p.r.z)
return false;
E entvol(d);
bool collided = mpr::collide(mpr::CubePlanes(p), entvol);
if(!collided) return false;
collidewall = vec(0, 0, 0);
float bestdist = -1e10f;
int visible = forceclipplanes(c, co, size, p);
CHECKSIDE(O_LEFT, p.o.x - p.r.x - entvol.right(), -dir.x, -d->radius, vec(-1, 0, 0));
CHECKSIDE(O_RIGHT, entvol.left() - (p.o.x + p.r.x), dir.x, -d->radius, vec(1, 0, 0));
CHECKSIDE(O_BACK, p.o.y - p.r.y - entvol.front(), -dir.y, -d->radius, vec(0, -1, 0));
CHECKSIDE(O_FRONT, entvol.back() - (p.o.y + p.r.y), dir.y, -d->radius, vec(0, 1, 0));
CHECKSIDE(O_BOTTOM, p.o.z - p.r.z - entvol.top(), -dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/4.0f, vec(0, 0, -1));
CHECKSIDE(O_TOP, entvol.bottom() - (p.o.z + p.r.z), dir.z, d->zmargin-(d->eyeheight+d->aboveeye)/3.0f, vec(0, 0, 1));
int bestplane = -1;
loopi(p.size)
{
const plane &w = p.p[i];
vec pw = entvol.supportpoint(vec(w).neg());
float dist = w.dist(pw);
if(dist <= bestdist) continue;
bestplane = -1;
bestdist = dist;
if(!dir.iszero())
{
if(w.dot(dir) >= -cutoff*dir.magnitude()) continue;
if(d->type==ENT_PLAYER &&
dist < (dir.z*w.z < 0 ?
d->zmargin-(d->eyeheight+d->aboveeye)/(dir.z < 0 ? 3.0f : 4.0f) :
(dir.x*w.x < 0 || dir.y*w.y < 0 ? -d->radius : 0)))
continue;
}
if(clampcollide(p, entvol, w, pw)) continue;
bestplane = i;
}
if(bestplane >= 0) collidewall = p.p[bestplane];
else if(collidewall.iszero())
{
collideinside++;
return false;
}
return true;
}
static inline bool cubecollide(physent *d, const vec &dir, float cutoff, const cube &c, const ivec &co, int size, bool solid)
{
switch(d->collidetype)
{
case COLLIDE_OBB:
if(isentirelysolid(c) || solid) return cubecollidesolid<mpr::EntOBB>(d, dir, cutoff, c, co, size);
else return cubecollideplanes<mpr::EntOBB>(d, dir, cutoff, c, co, size);
case COLLIDE_ELLIPSE:
if(isentirelysolid(c) || solid) return fuzzycollidesolid<mpr::EntCapsule>(d, dir, cutoff, c, co, size);
else return fuzzycollideplanes<mpr::EntCapsule>(d, dir, cutoff, c, co, size);
default: return false;
}
}
static inline bool octacollide(physent *d, const vec &dir, float cutoff, const ivec &bo, const ivec &bs, const cube *c, const ivec &cor, int size) // collide with octants
{
loopoctabox(cor, size, bo, bs)
{
if(c[i].ext && c[i].ext->ents) if(mmcollide(d, dir, cutoff, *c[i].ext->ents)) return true;
ivec o(i, cor, size);
if(c[i].children)
{
if(octacollide(d, dir, cutoff, bo, bs, c[i].children, o, size>>1)) return true;
}
else
{
bool solid = false;
switch(c[i].material&MATF_CLIP)
{
case MAT_NOCLIP: continue;
case MAT_CLIP: if(isclipped(c[i].material&MATF_VOLUME) || d->type==ENT_PLAYER) solid = true; break;
}
if(!solid && isempty(c[i])) continue;
if(cubecollide(d, dir, cutoff, c[i], o, size, solid)) return true;
}
}
return false;
}
static inline bool octacollide(physent *d, const vec &dir, float cutoff, const ivec &bo, const ivec &bs)
{
int diff = (bo.x^bs.x) | (bo.y^bs.y) | (bo.z^bs.z),
scale = worldscale-1;
if(diff&~((1<<scale)-1) || uint(bo.x|bo.y|bo.z|bs.x|bs.y|bs.z) >= uint(worldsize))
return octacollide(d, dir, cutoff, bo, bs, worldroot, ivec(0, 0, 0), worldsize>>1);
const cube *c = &worldroot[octastep(bo.x, bo.y, bo.z, scale)];
if(c->ext && c->ext->ents && mmcollide(d, dir, cutoff, *c->ext->ents)) return true;
scale--;
while(c->children && !(diff&(1<<scale)))
{
c = &c->children[octastep(bo.x, bo.y, bo.z, scale)];
if(c->ext && c->ext->ents && mmcollide(d, dir, cutoff, *c->ext->ents)) return true;
scale--;
}
if(c->children) return octacollide(d, dir, cutoff, bo, bs, c->children, ivec(bo).mask(~((2<<scale)-1)), 1<<scale);
bool solid = false;
switch(c->material&MATF_CLIP)
{
case MAT_NOCLIP: return false;
case MAT_CLIP: if(isclipped(c->material&MATF_VOLUME) || d->type==ENT_PLAYER) solid = true; break;
}
if(!solid && isempty(*c)) return false;
int csize = 2<<scale, cmask = ~(csize-1);
return cubecollide(d, dir, cutoff, *c, ivec(bo).mask(cmask), csize, solid);
}
// all collision happens here
bool collide(physent *d, const vec &dir, float cutoff, bool playercol, bool insideplayercol)
{
collideinside = 0;
collideplayer = nullptr;
collidewall = vec(0, 0, 0);
ivec bo(int(d->o.x-d->radius), int(d->o.y-d->radius), int(d->o.z-d->eyeheight)),
bs(int(d->o.x+d->radius), int(d->o.y+d->radius), int(d->o.z+d->aboveeye));
bo.sub(1); bs.add(1); // guard space for rounding errors
return octacollide(d, dir, cutoff, bo, bs) || (playercol && plcollide(d, dir, insideplayercol)); // collide with world
}
static void recalcdir(physent *d, const vec &oldvel, vec &dir)
{
float speed = oldvel.magnitude();
if(speed > 1e-6f)
{
float step = dir.magnitude();
dir = d->vel;
dir.add(d->falling);
dir.mul(step/speed);
}
}
static void slideagainst(physent *d, vec &dir, const vec &obstacle, bool foundfloor, bool slidecollide)
{
vec wall(obstacle);
if(foundfloor ? wall.z > 0 : slidecollide)
{
wall.z = 0;
if(!wall.iszero()) wall.normalize();
}
vec oldvel(d->vel);
oldvel.add(d->falling);
d->vel.project(wall);
d->falling.project(wall);
recalcdir(d, oldvel, dir);
}
static void switchfloor(physent *d, vec &dir, const vec &floor)
{
if(floor.z >= FLOORZ) d->falling = vec(0, 0, 0);
vec oldvel(d->vel);
oldvel.add(d->falling);
if(dir.dot(floor) >= 0)
{
if(d->physstate < PHYS_SLIDE || fabs(dir.dot(d->floor)) > 0.01f*dir.magnitude()) return;
d->vel.projectxy(floor, 0.0f);
}
else d->vel.projectxy(floor);
d->falling.project(floor);
recalcdir(d, oldvel, dir);
}
static bool trystepup(physent *d, vec &dir, const vec &obstacle, float maxstep, const vec &floor)
{
vec old(d->o), stairdir = (obstacle.z >= 0 && obstacle.z < SLOPEZ ? vec(-obstacle.x, -obstacle.y, 0) : vec(dir.x, dir.y, 0)).rescale(1);
bool cansmooth = true;
/* check if there is space atop the stair to move to */
if(d->physstate != PHYS_STEP_UP)
{
vec checkdir = stairdir;
checkdir.mul(0.1f);
checkdir.z += maxstep + 0.1f;
d->o.add(checkdir);
if(collide(d))
{
d->o = old;
if(!collide(d, vec(0, 0, -1), SLOPEZ)) return false;
cansmooth = false;
}
}
if(cansmooth)
{
vec checkdir = stairdir;
checkdir.z += 1;
checkdir.mul(maxstep);
d->o = old;
d->o.add(checkdir);
int scale = 2;
if(collide(d, checkdir))
{
if(!collide(d, vec(0, 0, -1), SLOPEZ))
{
d->o = old;
return false;
}
d->o.add(checkdir);
if(collide(d, vec(0, 0, -1), SLOPEZ)) scale = 1;
}
if(scale != 1)
{
d->o = old;
d->o.sub(checkdir.mul(vec(2, 2, 1)));
if(!collide(d, vec(0, 0, -1), SLOPEZ)) scale = 1;
}
d->o = old;
vec smoothdir(dir.x, dir.y, 0);
float magxy = smoothdir.magnitude();
if(magxy > 1e-9f)
{
if(magxy > scale*dir.z)
{
smoothdir.mul(1/magxy);
smoothdir.z = 1.0f/scale;
smoothdir.mul(dir.magnitude()/smoothdir.magnitude());
}
else smoothdir.z = dir.z;
d->o.add(smoothdir);
d->o.z += maxstep + 0.1f;
if(!collide(d, smoothdir))
{
d->o.z -= maxstep + 0.1f;
if(d->physstate == PHYS_FALL || d->floor != floor)
{
d->timeinair = 0;
d->floor = floor;
switchfloor(d, dir, d->floor);
}
d->physstate = PHYS_STEP_UP;
return true;
}
}
}
/* try stepping up */
d->o = old;
d->o.z += dir.magnitude();
if(!collide(d, vec(0, 0, 1)))
{
if(d->physstate == PHYS_FALL || d->floor != floor)
{
d->timeinair = 0;
d->floor = floor;
switchfloor(d, dir, d->floor);
}
if(cansmooth) d->physstate = PHYS_STEP_UP;
return true;
}
d->o = old;
return false;
}
static bool trystepdown(physent *d, vec &dir, float step, float xy, float z, bool init = false)
{
vec stepdir(dir.x, dir.y, 0);
stepdir.z = -stepdir.magnitude2()*z/xy;
if(!stepdir.z) return false;
stepdir.normalize();
vec old(d->o);
d->o.add(vec(stepdir).mul(STAIRHEIGHT/fabs(stepdir.z))).z -= STAIRHEIGHT;
d->zmargin = -STAIRHEIGHT;
if(collide(d, vec(0, 0, -1), SLOPEZ))
{
d->o = old;
d->o.add(vec(stepdir).mul(step));
d->zmargin = 0;
if(!collide(d, vec(0, 0, -1)))
{
vec stepfloor(stepdir);
stepfloor.mul(-stepfloor.z).z += 1;
stepfloor.normalize();
if(d->physstate >= PHYS_SLOPE && d->floor != stepfloor)
{
// prevent alternating step-down/step-up states if player would keep bumping into the same floor
vec stepped(d->o);
d->o.z -= 0.5f;
d->zmargin = -0.5f;
if(collide(d, stepdir) && collidewall == d->floor)
{
d->o = old;
if(!init) { d->o.x += dir.x; d->o.y += dir.y; if(dir.z <= 0 || collide(d, dir)) d->o.z += dir.z; }
d->zmargin = 0;
d->physstate = PHYS_STEP_DOWN;
d->timeinair = 0;
return true;
}
d->o = init ? old : stepped;
d->zmargin = 0;
}
else if(init) d->o = old;
switchfloor(d, dir, stepfloor);
d->floor = stepfloor;
d->physstate = PHYS_STEP_DOWN;
d->timeinair = 0;
return true;
}
}
d->o = old;
d->zmargin = 0;
return false;
}
static bool trystepdown(physent *d, vec &dir, bool init = false)
{
if((!d->move && !d->strafe) || !game::allowmove(d)) return false;
vec old(d->o);
d->o.z -= STAIRHEIGHT;
d->zmargin = -STAIRHEIGHT;
if(!collide(d, vec(0, 0, -1), SLOPEZ))
{
d->o = old;
d->zmargin = 0;
return false;
}
d->o = old;
d->zmargin = 0;
float step = dir.magnitude();
#if 1
// weaker check, just enough to avoid hopping up slopes
if(trystepdown(d, dir, step, 4, 1, init)) return true;
#else
if(trystepdown(d, dir, step, 2, 1, init)) return true;
if(trystepdown(d, dir, step, 1, 1, init)) return true;
if(trystepdown(d, dir, step, 1, 2, init)) return true;
#endif
return false;
}
static void falling(physent *d, vec &dir, const vec &floor)
{
if(floor.z > 0.0f && floor.z < SLOPEZ)
{
if(floor.z >= WALLZ) switchfloor(d, dir, floor);
d->timeinair = 0;
d->physstate = PHYS_SLIDE;
d->floor = floor;
}
else if(d->physstate < PHYS_SLOPE || dir.dot(d->floor) > 0.01f*dir.magnitude() || (floor.z != 0.0f && floor.z != 1.0f) || !trystepdown(d, dir, true))
d->physstate = PHYS_FALL;
}
static void landing(physent *d, vec &dir, const vec &floor, bool collided)
{
#if 0
if(d->physstate == PHYS_FALL)
{
d->timeinair = 0;
if(dir.z < 0.0f) dir.z = d->vel.z = 0.0f;
}
#endif
switchfloor(d, dir, floor);
d->timeinair = 0;
if((d->physstate!=PHYS_STEP_UP && d->physstate!=PHYS_STEP_DOWN) || !collided)
d->physstate = floor.z >= FLOORZ ? PHYS_FLOOR : PHYS_SLOPE;
d->floor = floor;
}
static bool findfloor(physent *d, const vec &dir, bool collided, const vec &obstacle, bool &slide, vec &floor)
{
bool found = false;
vec moved(d->o);
d->o.z -= 0.1f;
if(collide(d, vec(0, 0, -1), d->physstate == PHYS_SLOPE || d->physstate == PHYS_STEP_DOWN ? SLOPEZ : FLOORZ))
{
if(d->physstate == PHYS_STEP_UP && d->floor != collidewall)
{
vec old(d->o), checkfloor(collidewall), checkdir = vec(dir).projectxydir(checkfloor).rescale(dir.magnitude());
d->o.add(checkdir);
if(!collide(d, checkdir))
{
floor = checkfloor;
found = true;
goto foundfloor;
}
d->o = old;
}
else
{
floor = collidewall;
found = true;
goto foundfloor;
}
}
if(collided && obstacle.z >= SLOPEZ)
{
floor = obstacle;
found = true;
slide = false;
}
else if(d->physstate == PHYS_STEP_UP || d->physstate == PHYS_SLIDE)
{
if(collide(d, vec(0, 0, -1)) && collidewall.z > 0.0f)
{
floor = collidewall;
if(floor.z >= SLOPEZ) found = true;
}
}
else if(d->physstate >= PHYS_SLOPE && d->floor.z < 1.0f)
{
if(collide(d, vec(d->floor).neg(), 0.95f) || collide(d, vec(0, 0, -1)))
{
floor = collidewall;
if(floor.z >= SLOPEZ && floor.z < 1.0f) found = true;
}
}
foundfloor:
if(collided && (!found || obstacle.z > floor.z))
{
floor = obstacle;
slide = !found && (floor.z < WALLZ || floor.z >= SLOPEZ);
}
d->o = moved;
return found;
}
static bool move(physent *d, vec &dir)
{
vec old(d->o);
bool collided = false, slidecollide = false;
vec obstacle;
d->o.add(dir);
if(collide(d, dir))
{
obstacle = collidewall;
/* check to see if there is an obstacle that would prevent this one from being used as a floor (or ceiling bump) */
if(d->type==ENT_PLAYER && ((collidewall.z>=SLOPEZ && dir.z<0) || (collidewall.z<=-SLOPEZ && dir.z>0)) && (dir.x || dir.y) && collide(d, vec(dir.x, dir.y, 0)))
{
if(collidewall.dot(dir) >= 0) slidecollide = true;
obstacle = collidewall;
}
d->o = old;
d->o.z -= STAIRHEIGHT;
d->zmargin = -STAIRHEIGHT;
if(d->physstate == PHYS_SLOPE || d->physstate == PHYS_FLOOR || (collide(d, vec(0, 0, -1), SLOPEZ) && (d->physstate==PHYS_STEP_UP || d->physstate==PHYS_STEP_DOWN || collidewall.z>=FLOORZ)))
{
d->o = old;
d->zmargin = 0;
if(trystepup(d, dir, obstacle, STAIRHEIGHT, d->physstate == PHYS_SLOPE || d->physstate == PHYS_FLOOR ? d->floor : vec(collidewall))) return true;
}
else
{
d->o = old;
d->zmargin = 0;
}
/* can't step over the obstacle, so just slide against it */
collided = true;
}
else if(d->physstate == PHYS_STEP_UP)
{
if(collide(d, vec(0, 0, -1), SLOPEZ))
{
d->o = old;
if(trystepup(d, dir, vec(0, 0, 1), STAIRHEIGHT, vec(collidewall))) return true;
d->o.add(dir);
}
}
else if(d->physstate == PHYS_STEP_DOWN && dir.dot(d->floor) <= 1e-6f)
{
vec moved(d->o);
d->o = old;
if(trystepdown(d, dir)) return true;
d->o = moved;
}
vec floor(0, 0, 0);
bool slide = collided,
found = findfloor(d, dir, collided, obstacle, slide, floor);
if(slide || (!collided && floor.z > 0 && floor.z < WALLZ))
{
slideagainst(d, dir, slide ? obstacle : floor, found, slidecollide);
d->blocked = true;
}
if(found) landing(d, dir, floor, collided);
else falling(d, dir, floor);
return !collided;
}
void crouchplayer(physent *pl, int moveres, bool local)
{
if(!curtime) return;
float minheight = pl->maxheight * CROUCHHEIGHT, speed = (pl->maxheight - minheight) * curtime / float(CROUCHTIME);
if(pl->crouching < 0)
{
if(pl->eyeheight > minheight)
{
float diff = min(pl->eyeheight - minheight, speed);
pl->eyeheight -= diff;
if(pl->physstate > PHYS_FALL)
{
pl->o.z -= diff;
pl->newpos.z -= diff;
}
}
}
else if(pl->eyeheight < pl->maxheight)
{
float diff = min(pl->maxheight - pl->eyeheight, speed), step = diff/moveres;
pl->eyeheight += diff;
if(pl->physstate > PHYS_FALL)
{
pl->o.z += diff;
pl->newpos.z += diff;
}
pl->crouching = 0;
loopi(moveres)
{
if(!collide(pl, vec(0, 0, pl->physstate <= PHYS_FALL ? -1 : 1), 0, true)) break;
pl->crouching = 1;
pl->eyeheight -= step;
if(pl->physstate > PHYS_FALL)
{
pl->o.z -= step;
pl->newpos.z -= step;
}
}
}
}
bool bounce(physent *d, float secs, float elasticity, float waterfric, float grav)
{
// make sure bouncers don't start inside geometry
if(d->physstate!=PHYS_BOUNCE && collide(d, vec(0, 0, 0), 0, false)) return true;
int mat = lookupmaterial(vec(d->o.x, d->o.y, d->o.z + (d->aboveeye - d->eyeheight)/2));
bool water = isliquid(mat);
if(water)
{
d->vel.z -= grav*GRAVITY/16*secs;
d->vel.mul(max(1.0f - secs/waterfric, 0.0f));
}
else d->vel.z -= grav*GRAVITY*secs;
vec old(d->o);
loopi(2)
{
vec dir(d->vel);
dir.mul(secs);
d->o.add(dir);
if(!collide(d, dir, 0, true, true))
{
if(collideinside)
{
d->o = old;
d->vel.mul(-elasticity);
}
break;
}
else if(collideplayer) break;
d->o = old;
//game::bounced(d, collidewall);
float c = collidewall.dot(d->vel),
k = 1.0f + (1.0f-elasticity)*c/d->vel.magnitude();
d->vel.mul(k);
d->vel.sub(vec(collidewall).mul(elasticity*2.0f*c));
}
if(d->physstate!=PHYS_BOUNCE)
{
// make sure bouncers don't start inside geometry
if(d->o == old) return !collideplayer;
d->physstate = PHYS_BOUNCE;
}
return collideplayer!=nullptr;
}
void avoidcollision(physent *d, const vec &dir, physent *obstacle, float space)
{
float rad = obstacle->radius+d->radius;
vec bbmin(obstacle->o);
bbmin.x -= rad;
bbmin.y -= rad;
bbmin.z -= obstacle->eyeheight+d->aboveeye;
bbmin.sub(space);
vec bbmax(obstacle->o);
bbmax.x += rad;
bbmax.y += rad;
bbmax.z += obstacle->aboveeye+d->eyeheight;
bbmax.add(space);
loopi(3) if(d->o[i] <= bbmin[i] || d->o[i] >= bbmax[i]) return;
float mindist = 1e16f;
loopi(3) if(dir[i] != 0)
{
float dist = ((dir[i] > 0 ? bbmax[i] : bbmin[i]) - d->o[i]) / dir[i];
mindist = min(mindist, dist);
}
if(mindist >= 0.0f && mindist < 1e15f) d->o.add(vec(dir).mul(mindist));
}
bool movecamera(physent *pl, const vec &dir, float dist, float stepdist)
{
int steps = (int)ceil(dist/stepdist);
if(steps <= 0) return true;
vec d(dir);
d.mul(dist/steps);
loopi(steps)
{
vec oldpos(pl->o);
pl->o.add(d);
if(collide(pl, vec(0, 0, 0), 0, false))
{
pl->o = oldpos;
return false;
}
}
return true;
}
bool droptofloor(vec &o, float radius, float height)
{
static struct dropent : physent
{
dropent()
{
type = ENT_BOUNCE;
vel = vec(0, 0, -1);
}
} d;
d.o = o;
if(!insideworld(d.o))
{
if(d.o.z < worldsize) return false;
d.o.z = worldsize - 1e-3f;
if(!insideworld(d.o)) return false;
}
vec v(0.0001f, 0.0001f, -1);
v.normalize();
if(raycube(d.o, v, worldsize) >= worldsize) return false;
d.radius = d.xradius = d.yradius = radius;
d.eyeheight = height;
d.aboveeye = radius;
if(!movecamera(&d, d.vel, worldsize, 1))
{
o = d.o;
return true;
}
return false;
}
static float dropheight(entity &e)
{
switch(e.type)
{
case ET_PARTICLES:
case ET_MAPMODEL: return 0.0f;
default:
if(e.type >= ET_GAMESPECIFIC) return entities::dropheight(e);
return 4.0f;
}
}
void dropenttofloor(entity *e)
{
droptofloor(e->o, 1.0f, dropheight(*e));
}
static void phystest()
{
static const char * const states[] = {"float", "fall", "slide", "slope", "floor", "step up", "step down", "bounce"};
printf ("PHYS(pl): %s, air %d, floor: (%f, %f, %f), vel: (%f, %f, %f), g: (%f, %f, %f)\n", states[player->physstate], player->timeinair, player->floor.x, player->floor.y, player->floor.z, player->vel.x, player->vel.y, player->vel.z, player->falling.x, player->falling.y, player->falling.z);
printf ("PHYS(cam): %s, air %d, floor: (%f, %f, %f), vel: (%f, %f, %f), g: (%f, %f, %f)\n", states[camera1->physstate], camera1->timeinair, camera1->floor.x, camera1->floor.y, camera1->floor.z, camera1->vel.x, camera1->vel.y, camera1->vel.z, camera1->falling.x, camera1->falling.y, camera1->falling.z);
}
COMMAND(phystest, "");
void vecfromyawpitch(float yaw, float pitch, int move, int strafe, vec &m)
{
if(move)
{
m.x = move*-sinf(RAD*yaw);
m.y = move*cosf(RAD*yaw);
}
else m.x = m.y = 0;
if(pitch)
{
m.x *= cosf(RAD*pitch);
m.y *= cosf(RAD*pitch);
m.z = move*sinf(RAD*pitch);
}
else m.z = 0;
if(strafe)
{
m.x += strafe*cosf(RAD*yaw);
m.y += strafe*sinf(RAD*yaw);
}
}
void vectoyawpitch(const vec &v, float &yaw, float &pitch)
{
if(v.iszero()) yaw = pitch = 0;
else
{
yaw = -atan2(v.x, v.y)/RAD;
pitch = asin(v.z/v.magnitude())/RAD;
}
}
#define PHYSFRAMETIME 8
VARP(maxroll, 0, 0, 20);
FVAR(straferoll, 0, 0.033f, 90);
FVAR(faderoll, 0, 0.95f, 1);
VAR(floatspeed, 1, 100, 10000);
static void modifyvelocity(physent *pl, bool local, bool water, bool floating, int curtime)
{
bool allowmove = game::allowmove(pl);
if(floating)
{
if(pl->jumping && allowmove)
{
pl->jumping = false;
pl->vel.z = max(pl->vel.z, JUMPVEL);
}
}
else if(pl->physstate >= PHYS_SLOPE || water)
{
if(water && !pl->inwater) pl->vel.div(8);
if(pl->jumping && allowmove)
{
pl->jumping = false;
pl->vel.z = max(pl->vel.z, JUMPVEL); // physics impulse upwards
if(water) { pl->vel.x /= 8.0f; pl->vel.y /= 8.0f; } // dampen velocity change even harder, gives correct water feel
game::physicstrigger(pl, local, 1, 0);
}
}
if(!floating && pl->physstate == PHYS_FALL) pl->timeinair = min(pl->timeinair + curtime, 1000);
vec m(0.0f, 0.0f, 0.0f);
if((pl->move || pl->strafe) && allowmove)
{
vecfromyawpitch(pl->yaw, floating || water || pl->type==ENT_CAMERA ? pl->pitch : 0, pl->move, pl->strafe, m);
if(!floating && pl->physstate >= PHYS_SLOPE)
{
/* move up or down slopes in air
* but only move up slopes in water
*/
float dz = -(m.x*pl->floor.x + m.y*pl->floor.y)/pl->floor.z;
m.z = water ? max(m.z, dz) : dz;
}
m.normalize();
}
vec d(m);
d.mul(pl->maxspeed);
if(pl->type==ENT_PLAYER)
{
if(floating)
{
if(pl==player) d.mul(floatspeed/100.0f);
}
else if(pl->crouching) d.mul(0.4f);
}
float fric = water && !floating ? 20.0f : (pl->physstate >= PHYS_SLOPE || floating ? 6.0f : 30.0f);
pl->vel.lerp(d, pl->vel, pow(1 - 1/fric, curtime/20.0f));
// old fps friction
// float friction = water && !floating ? 20.0f : (pl->physstate >= PHYS_SLOPE || floating ? 6.0f : 30.0f);
// float fpsfric = min(curtime/(20.0f*friction), 1.0f);
// pl->vel.lerp(pl->vel, d, fpsfric);
}
static void modifygravity(physent *pl, bool water, int curtime)
{
float secs = curtime/1000.0f;
vec g(0, 0, 0);
if(pl->physstate == PHYS_FALL) g.z -= GRAVITY*secs;
else if(pl->floor.z > 0 && pl->floor.z < FLOORZ)
{
g.z = -1;
g.project(pl->floor);
g.normalize();
g.mul(GRAVITY*secs);
}
if(!water || !game::allowmove(pl) || (!pl->move && !pl->strafe)) pl->falling.add(g);
if(water || pl->physstate >= PHYS_SLOPE)
{
float fric = water ? 2.0f : 6.0f,
c = water ? 1.0f : std::clamp((pl->floor.z - SLOPEZ)/(FLOORZ-SLOPEZ), 0.0f, 1.0f);
pl->falling.mul(pow(1 - c/fric, curtime/20.0f));
// old fps friction
// float friction = water ? 2.0f : 6.0f,
// fpsfric = friction/curtime*20.0f,
// c = water ? 1.0f : std::clamp((pl->floor.z - SLOPEZ)/(FLOORZ-SLOPEZ), 0.0f, 1.0f);
// pl->falling.mul(1 - c/fpsfric);
}
}
// main physics routine, moves a player/monster for a curtime step
// moveres indicated the physics precision (which is lower for monsters and multiplayer prediction)
// local is false for multiplayer prediction
bool moveplayer(physent *pl, int moveres, bool local, int curtime)
{
int material = lookupmaterial(vec(pl->o.x, pl->o.y, pl->o.z + (3*pl->aboveeye - pl->eyeheight)/4));
bool water = isliquid(material&MATF_VOLUME);
bool floating = pl->type==ENT_PLAYER && (pl->state==CS_EDITING || pl->state==CS_SPECTATOR);
float secs = curtime/1000.f;
// apply gravity
if(!floating) modifygravity(pl, water, curtime);
// apply any player generated changes in velocity
modifyvelocity(pl, local, water, floating, curtime);
vec d(pl->vel);
if(!floating && water) d.mul(0.5f);
d.add(pl->falling);
d.mul(secs);
pl->blocked = false;
if(floating) // just apply velocity
{
if(pl->physstate != PHYS_FLOAT)
{
pl->physstate = PHYS_FLOAT;
pl->timeinair = 0;
pl->falling = vec(0, 0, 0);
}
pl->o.add(d);
}
else // apply velocity with collision
{
const float f = 1.0f/moveres;
const int timeinair = pl->timeinair;
int collisions = 0;
d.mul(f);
loopi(moveres) if(!move(pl, d) && ++collisions<5) i--; // discrete steps collision detection & sliding
if(timeinair > 800 && !pl->timeinair && !water) // if we land after long time must have been a high jump, make thud sound
{
game::physicstrigger(pl, local, -1, 0);
}
}
if(pl->state==CS_ALIVE) updatedynentcache(pl);
// automatically apply smooth roll when strafing
if(pl->strafe && maxroll) pl->roll = std::clamp(pl->roll - pow(std::clamp(1.0f + pl->strafe*pl->roll/maxroll, 0.0f, 1.0f), 0.33f)*pl->strafe*curtime*straferoll, float(-maxroll), float(maxroll));
else pl->roll *= curtime == PHYSFRAMETIME ? faderoll : pow(faderoll, curtime/float(PHYSFRAMETIME));
// play sounds on water transitions
if(pl->inwater && !water)
{
material = lookupmaterial(vec(pl->o.x, pl->o.y, pl->o.z + (pl->aboveeye - pl->eyeheight)/2));
water = isliquid(material&MATF_VOLUME);
}
if(!pl->inwater && water) game::physicstrigger(pl, local, 0, -1, material&MATF_VOLUME);
else if(pl->inwater && !water) game::physicstrigger(pl, local, 0, 1, pl->inwater);
pl->inwater = water ? material&MATF_VOLUME : MAT_AIR;
//if(pl->state==CS_ALIVE && (pl->o.z < 0 || material&MAT_DEATH)) game::suicide(pl);
return true;
}
static int physsteps = 0, physframetime = PHYSFRAMETIME, lastphysframe = 0;
void physicsframe() // optimally schedule physics frames inside the graphics frames
{
int diff = lastmillis - lastphysframe;
if(diff <= 0) physsteps = 0;
else
{
physframetime = std::clamp(game::scaletime(PHYSFRAMETIME)/100, 1, PHYSFRAMETIME);
physsteps = (diff + physframetime - 1)/physframetime;
lastphysframe += physsteps * physframetime;
}
cleardynentcache();
}
VAR(physinterp, 0, 1, 1);
static void interppos(physent *pl)
{
pl->o = pl->newpos;
int diff = lastphysframe - lastmillis;
if(diff <= 0 || !physinterp) return;
vec deltapos(pl->deltapos);
deltapos.mul(min(diff, physframetime)/float(physframetime));
pl->o.add(deltapos);
}
void moveplayer(physent *pl, int moveres, bool local)
{
if(physsteps <= 0)
{
if(local) interppos(pl);
return;
}
if(local) pl->o = pl->newpos;
loopi(physsteps-1) moveplayer(pl, moveres, local, physframetime);
if(local) pl->deltapos = pl->o;
moveplayer(pl, moveres, local, physframetime);
if(local)
{
pl->newpos = pl->o;
pl->deltapos.sub(pl->newpos);
interppos(pl);
}
}
bool bounce(physent *d, float elasticity, float waterfric, float grav)
{
if(physsteps <= 0)
{
interppos(d);
return false;
}
d->o = d->newpos;
bool hitplayer = false;
loopi(physsteps-1)
{
if(bounce(d, physframetime/1000.0f, elasticity, waterfric, grav)) hitplayer = true;
}
d->deltapos = d->o;
if(bounce(d, physframetime/1000.0f, elasticity, waterfric, grav)) hitplayer = true;
d->newpos = d->o;
d->deltapos.sub(d->newpos);
interppos(d);
return hitplayer;
}
void updatephysstate(physent *d)
{
if(d->physstate == PHYS_FALL) return;
d->timeinair = 0;
vec old(d->o);
/* Attempt to reconstruct the floor state.
* May be inaccurate since movement collisions are not considered.
* If good floor is not found, just keep the old floor and hope it's correct enough.
*/
switch(d->physstate)
{
case PHYS_SLOPE:
case PHYS_FLOOR:
case PHYS_STEP_DOWN:
d->o.z -= 0.15f;
if(collide(d, vec(0, 0, -1), d->physstate == PHYS_SLOPE || d->physstate == PHYS_STEP_DOWN ? SLOPEZ : FLOORZ))
d->floor = collidewall;
break;
case PHYS_STEP_UP:
d->o.z -= STAIRHEIGHT+0.15f;
if(collide(d, vec(0, 0, -1), SLOPEZ))
d->floor = collidewall;
break;
case PHYS_SLIDE:
d->o.z -= 0.15f;
if(collide(d, vec(0, 0, -1)) && collidewall.z < SLOPEZ)
d->floor = collidewall;
break;
}
if(d->physstate > PHYS_FALL && d->floor.z <= 0) d->floor = vec(0, 0, 1);
d->o = old;
}
#define dir(name,v,d,s,os) ICOMMAND(name, "D", (int *down), { player->s = *down!=0; player->v = player->s ? d : (player->os ? -(d) : 0); });
dir(backward, move, -1, k_down, k_up);
dir(forward, move, 1, k_up, k_down);
dir(left, strafe, 1, k_left, k_right);
dir(right, strafe, -1, k_right, k_left);
ICOMMAND(jump, "D", (int *down), { if(!*down || game::canjump()) player->jumping = *down!=0; });
ICOMMAND(crouch, "D", (int *down), { if(!*down) player->crouching = abs(player->crouching); else if(game::cancrouch()) player->crouching = -1; });
bool entinmap(dynent *d, bool avoidplayers) // brute force but effective way to find a free spawn spot in the map
{
d->o.z += d->eyeheight; // pos specified is at feet
vec orig = d->o;
loopi(100) // try max 100 times
{
if(i)
{
d->o = orig;
d->o.x += (rnd(21)-10)*i/5; // increasing distance
d->o.y += (rnd(21)-10)*i/5;
d->o.z += (rnd(21)-10)*i/5;
}
if(!collide(d) && !collideinside)
{
if(collideplayer)
{
if(!avoidplayers) continue;
d->o = orig;
d->resetinterp();
return false;
}
d->resetinterp();
return true;
}
}
// leave ent at original pos, possibly stuck
d->o = orig;
d->resetinterp();
conoutf(CON_WARN, "can't find entity spawn spot! (%.1f, %.1f, %.1f)", d->o.x, d->o.y, d->o.z);
return false;
}