/* Concurrency module with custom scheduler support. * * This file is part of OctaSTD. See COPYING.md for futher information. */ #ifndef OSTD_CONCURRENCY_HH #define OSTD_CONCURRENCY_HH #include #include #include #include "ostd/coroutine.hh" #include "ostd/channel.hh" namespace ostd { struct thread_scheduler { template using channel_type = channel; ~thread_scheduler() { join_all(); } template auto start(F &&func, A &&...args) -> std::result_of_t { return func(std::forward(args)...); } template void spawn(F &&func, A &&...args) { std::lock_guard l{p_lock}; p_threads.emplace_front(); auto it = p_threads.begin(); *it = std::thread{ [this, it](auto func, auto ...args) { func(std::move(args)...); remove_thread(it); }, std::forward(func), std::forward(args)... }; } void yield() { std::this_thread::yield(); } template channel make_channel() { return channel{}; } private: void remove_thread(typename std::list::iterator it) { std::lock_guard l{p_lock}; std::thread t{std::exchange(p_dead, std::move(*it))}; if (t.joinable()) { t.join(); } p_threads.erase(it); } void join_all() { /* wait for all threads to finish */ std::lock_guard l{p_lock}; if (p_dead.joinable()) { p_dead.join(); } for (auto &t: p_threads) { t.join(); } } std::list p_threads; std::thread p_dead; std::mutex p_lock; }; template struct basic_simple_coroutine_scheduler { private: /* simple one just for channels */ struct coro_cond { coro_cond() = delete; coro_cond(coro_cond const &) = delete; coro_cond(coro_cond &&) = delete; coro_cond &operator=(coro_cond const &) = delete; coro_cond &operator=(coro_cond &&) = delete; coro_cond(basic_simple_coroutine_scheduler &s): p_sched(s) {} template void wait(L &l) noexcept { l.unlock(); while (!p_notified) { p_sched.yield(); } p_notified = false; l.lock(); } void notify_one() noexcept { p_notified = true; p_sched.yield(); } void notify_all() noexcept { p_notified = true; p_sched.yield(); } private: basic_simple_coroutine_scheduler &p_sched; bool p_notified = false; }; public: template using channel_type = channel; basic_simple_coroutine_scheduler( size_t ss = TR::default_size(), size_t cs = basic_stack_pool::DEFAULT_CHUNK_SIZE ): p_stacks(ss, cs), p_dispatcher([this](auto yield_main) { this->dispatch(yield_main); }, p_stacks.get_allocator()), p_coros() {} template auto start(F &&func, A &&...args) -> std::result_of_t { using R = std::result_of_t; if constexpr(std::is_same_v) { func(std::forward(args)...); finish(); } else { auto ret = func(std::forward(args)...); finish(); return ret; } } template void spawn(F &&func, A &&...args) { if constexpr(sizeof...(A) == 0) { p_coros.emplace_back([lfunc = std::forward(func)](auto) { lfunc(); }, p_stacks.get_allocator()); } else { p_coros.emplace_back([lfunc = std::bind( std::forward(func), std::forward(args)... )](auto) mutable { lfunc(); }, p_stacks.get_allocator()); } } void yield() { auto ctx = coroutine_context::current(); if (!ctx) { /* yield from main means go to dispatcher and call first task */ p_idx = p_coros.begin(); p_dispatcher(); return; } coro *c = dynamic_cast(ctx); if (c) { typename coro::yield_type{*c}(); return; } throw std::runtime_error{"attempt to yield outside coroutine"}; } template channel make_channel() { return channel{[this]() { return coro_cond{*this}; }}; } private: struct coro: coroutine { using coroutine::coroutine; }; void dispatch(typename coro::yield_type &yield_main) { while (!p_coros.empty()) { if (p_idx == p_coros.end()) { /* we're at the end; it's time to return to main and * continue there (potential yield from main results * in continuing from this point with the first task) */ yield_main(); continue; } (*p_idx)(); if (!*p_idx) { p_idx = p_coros.erase(p_idx); } else { ++p_idx; } } } void finish() { /* main has finished, but there might be either suspended or never * started tasks in the queue; dispatch until there are none left */ while (!p_coros.empty()) { p_idx = p_coros.begin(); p_dispatcher(); } } basic_stack_pool p_stacks; coro p_dispatcher; std::list p_coros; typename std::list::iterator p_idx = p_coros.end(); }; using simple_coroutine_scheduler = basic_simple_coroutine_scheduler; using protected_simple_coroutine_scheduler = basic_simple_coroutine_scheduler; template struct basic_coroutine_scheduler { private: struct task_cond; struct task; using tlist = std::list; using titer = typename tlist::iterator; struct task { struct coro: coroutine { using coroutine::coroutine; task *tptr = nullptr; }; coro func; task_cond *waiting_on = nullptr; task *next_waiting = nullptr; titer pos; task() = delete; template task(F &&f, SA &&alloc): func(std::forward(f), std::forward(alloc)) { func.tptr = this; } void operator()() { func(); } void yield() { /* we'll yield back to the thread we were scheduled to, which * will appropriately notify one or all other waiting threads * so we either get re-scheduled or the whole scheduler dies */ typename coro::yield_type{func}(); } bool dead() const { return !func; } static task *current() { auto ctx = coroutine_context::current(); coro *c = dynamic_cast(ctx); if (!c) { std::terminate(); } return c->tptr; } }; struct task_cond { task_cond() = delete; task_cond(task_cond const &) = delete; task_cond(task_cond &&) = delete; task_cond &operator=(task_cond const &) = delete; task_cond &operator=(task_cond &&) = delete; task_cond(basic_coroutine_scheduler &s): p_sched(s) {} template void wait(L &l) noexcept { l.unlock(); task *curr = task::current(); p_sched.wait(this, p_waiting, curr); curr->yield(); l.lock(); } void notify_one() noexcept { p_sched.notify_one(p_waiting); } void notify_all() noexcept { p_sched.notify_all(p_waiting); } private: basic_coroutine_scheduler &p_sched; task *p_waiting = nullptr; }; public: template using channel_type = channel; basic_coroutine_scheduler( size_t ss = TR::default_size(), size_t cs = basic_stack_pool::DEFAULT_CHUNK_SIZE ): p_stacks(ss, cs) {} ~basic_coroutine_scheduler() {} template auto start(F &&func, A &&...args) -> std::result_of_t { /* start with one task in the queue, this way we can * say we've finished when the task queue becomes empty */ using R = std::result_of_t; if constexpr(std::is_same_v) { spawn(std::forward(func), std::forward(args)...); /* actually start the thread pool */ init(); destroy(); } else { R ret; spawn([&ret, func = std::forward(func)](auto &&...args) { ret = func(std::forward(args)...); }, std::forward(args)...); init(); destroy(); return ret; } } template void spawn(F &&func, A &&...args) { { std::lock_guard l{p_lock}; task *t = nullptr; if constexpr(sizeof...(A) == 0) { t = &p_available.emplace_back( [lfunc = std::forward(func)](auto) { lfunc(); }, p_stacks.get_allocator() ); } else { t = &p_available.emplace_back( [lfunc = std::bind( std::forward(func), std::forward(args)... )](auto) mutable { lfunc(); }, p_stacks.get_allocator() ); } t->pos = --p_available.end(); } p_cond.notify_one(); } void yield() { task::current()->yield(); } template channel make_channel() { return channel{[this]() { return task_cond{*this}; }}; } private: void init() { auto tf = [this]() { thread_run(); }; size_t size = std::thread::hardware_concurrency(); for (size_t i = 0; i < size; ++i) { std::thread tid{tf}; if (!tid.joinable()) { throw std::runtime_error{"coroutine_scheduler worker failed"}; } p_thrs.push_back(std::move(tid)); } } void destroy() { for (auto &tid: p_thrs) { tid.join(); } } void wait(task_cond *cond, task *&wt, task *t) { std::lock_guard l{p_lock}; p_waiting.splice(p_waiting.cbegin(), p_running, t->pos); t->waiting_on = cond; t->next_waiting = wt; wt = t; } void notify_one(task *&wl) { std::unique_lock l{p_lock}; if (wl == nullptr) { return; } wl->waiting_on = nullptr; p_available.splice(p_available.cbegin(), p_waiting, wl->pos); wl = wl->next_waiting; l.unlock(); p_cond.notify_one(); task::current()->yield(); } void notify_all(task *&wl) { { std::unique_lock l{p_lock}; while (wl != nullptr) { wl->waiting_on = nullptr; p_available.splice(p_available.cbegin(), p_waiting, wl->pos); wl = wl->next_waiting; l.unlock(); p_cond.notify_one(); l.lock(); } } task::current()->yield(); } void thread_run() { for (;;) { std::unique_lock l{p_lock}; /* wait for an item to become available */ while (p_available.empty()) { /* if all lists have become empty, we're done */ if (p_waiting.empty() && p_running.empty()) { return; } p_cond.wait(l); } task_run(l); } } void task_run(std::unique_lock &l) { auto it = p_available.begin(); p_running.splice(p_running.cend(), p_available, it); task &c = *it; l.unlock(); c(); l.lock(); if (c.dead()) { p_running.erase(it); /* we're dead, notify all threads so they can be joined * we check all three, saves the other threads some re-waiting * when a task or tasks are already running, and those that do * will do the final notify by themselves */ if (p_available.empty() && p_waiting.empty() && p_running.empty()) { l.unlock(); p_cond.notify_all(); } } else if (!c.waiting_on) { /* reschedule to the end of the queue */ p_available.splice(p_available.cend(), p_running, it); l.unlock(); p_cond.notify_one(); } } std::condition_variable p_cond; std::mutex p_lock; std::vector p_thrs; basic_stack_pool p_stacks; tlist p_available; tlist p_waiting; tlist p_running; }; using coroutine_scheduler = basic_coroutine_scheduler; using protected_coroutine_scheduler = basic_coroutine_scheduler; template inline void spawn(S &sched, F &&func, A &&...args) { sched.spawn(std::forward(func), std::forward(args)...); } template inline void yield(S &sched) { sched.yield(); } template inline auto make_channel(S &sched) -> typename S::template channel_type { return sched.template make_channel(); } } /* namespace ostd */ #endif