/** @defgroup Strings * * @brief Provides string processing extensions. * * As libostd provides a range system, it represents string slices as * contiguous ranges of characters. This has many advantages, such as * being able to use them with generic algorithms. The string slices are * not zero terminated, which means creating subslices is very fast, it's * basically just pointer arithmetic. * * Integration with existing string handling facilities is ensured, so you * can incorporate libostd into any existing project and still benefit from * the new features. * * A simple example: * * ~~~{.cc} * #include * #include * * int main() { * ostd::string_range x = "hello world"; * auto p1 = x.slice(0, 5); * auto p2 = x.slice(6); * ostd::writeln(p1); // hello * ostd::writeln(p2); // world * } * ~~~ * * An example of using libostd string formatting: * * @include format.cc * * See the examples provided with the library for further information. * * @{ */ /** @file string.hh * * @brief String slice implementation as well as other utilities. * * This file implements string slices, their comparisons, utilities, * standard C++ string range integration, range literals, std::hash * support for string slices and others. * * @copyright See COPYING.md in the project tree for further information. */ #ifndef OSTD_STRING_HH #define OSTD_STRING_HH #include #include #include #include #include #include #include #include #include "ostd/range.hh" #include "ostd/algorithm.hh" namespace ostd { /** @addtogroup Strings * @{ */ /** @brief A string slice type. * * This is a contiguous range over a character type. The character type * can be any of the standard character types, of any size - for example * you would use `char32_t` to represent UTF-32 slices. The std::char_traits * structure (or its equivalent) is used for the basic string operations * where possible. * * The range is mutable, i.e. it implements the output range interface. */ template>> struct basic_char_range: input_range> { using range_category = contiguous_range_tag; using value_type = T; using reference = T &; using size_type = std::size_t; using traits_type = TR; private: struct nat {}; public: /** @brief Constructs an empty slice. */ basic_char_range() noexcept: p_beg(nullptr), p_end(nullptr) {}; /** @brief Constructs a slice from two pointers. * * The first pointer is the beginning of the slice * and the second pointer is just past the end. */ basic_char_range(value_type *beg, value_type *end) noexcept: p_beg(beg), p_end(end) {} /** @brief Constructs an empty slice. */ basic_char_range(std::nullptr_t) noexcept: p_beg(nullptr), p_end(nullptr) {} /** @brief Constructs a slice from a pointer or a static array. * * This constructor handles two cases. The input must be convertible * to `T *`, if it's not, this constructor is not enabled. Effectively, * if the input is a static array of `T`, the entire array is used to * create the slice, minus the potential zero at the end. If there is * no zero at the end, nothing is removed and the array is used whole. * If the input is not an array, the size is not known at compile time * and the traits_type is used to check the length. */ template basic_char_range(U &&beg, std::enable_if_t< std::is_convertible_v, nat > = nat{}) noexcept: p_beg(beg) { if constexpr(std::is_array_v>) { std::size_t N = std::extent_v>; p_end = beg + N - (beg[N - 1] == '\0'); } else { p_end = beg + (beg ? TR::length(beg) : 0); } } /** @brief Constructs a slice from an std::basic_string. * * This uses the string's data to construct a matching slice. */ template basic_char_range( std::basic_string, STR, A> const &s ) noexcept: p_beg(s.data()), p_end(s.data() + s.size()) {} /** @brief Constructs a slice from a different but compatible slice. * * The other slice can use any traits type, but a pointer to the * other slice's value type must be convertible to a pointer to * the new slice's value type, otherwise the constructor will not * be enabled. */ template >> basic_char_range(basic_char_range const &v) noexcept: p_beg(&v[0]), p_end(&v[v.size()]) {} /** @brief Slices are arbitrarily copy constructible. */ basic_char_range &operator=(basic_char_range const &v) noexcept { p_beg = v.p_beg; p_end = v.p_end; return *this; } /** @brief Assigns the slice's data from a matching std::basic_string. * * The string does not have to be using a matching traits type. */ template basic_char_range &operator=( std::basic_string const &s ) noexcept { p_beg = s.data(); p_end = s.data() + s.size(); return *this; } /** @brief Assigns the slice's data from a pointer. * * The data pointed to by the argument must be zero terminated. * The traits_type is used to check the length of the string. */ basic_char_range &operator=(value_type *s) noexcept { p_beg = s; p_end = s + (s ? TR::length(s) : 0); return *this; } /** @brief Checks if the slice is empty. */ bool empty() const noexcept { return p_beg == p_end; } /** @brief Pops the first character out of the slice. * * This is bounds checked, std::out_of_range is thrown when * slice was already empty before popping out the character. * No changes are done to the slice if it throws. * * @throws std::out_of_range when empty. * * @see front(), pop_back() */ void pop_front() { if (p_beg == p_end) { throw std::out_of_range{"pop_front on empty range"}; } ++p_beg; } /** @brief Gets a reference to the first character. * * The behavior is undefined when the slice is empty. * * @see back(), pop_front() */ reference front() const noexcept { return *p_beg; } /** @brief Pops the last character out of the slice. * * This is bounds checked, std::out_of_range is thrown when * slice was already empty before popping out the character. * No changes are done to the slice if it throws. * * @throws std::out_of_range when empty. * * @see back(), pop_front() */ void pop_back() { if (p_beg == p_end) { throw std::out_of_range{"pop_back on empty range"}; } --p_end; } /** @brief Gets a reference to the last character. * * The behavior is undefined when the slice is empty. * * @see front(), pop_back() */ reference back() const noexcept { return *(p_end - 1); } /** @brief Gets the number of value_type in the slice. */ size_type size() const noexcept { return p_end - p_beg; } /** @brief Creates a sub-slice of the slice. * * Behavior is undefined if `start` and `end` are not within the * slice's bounds. There is no bound checking done in this call. * It's also undefined if the first argument is larger than the * second argument. */ basic_char_range slice(size_type start, size_type end) const noexcept { return basic_char_range(p_beg + start, p_beg + end); } /** @brief Creates a sub-slice of the slice until the end. * * Equivalent to slice(size_type, size_type) with `size()` as * the second argument. The first argument must be within the * slice's boundaries otherwis the behavior is undefined. */ basic_char_range slice(size_type start) const noexcept { return slice(start, size()); } /** @brief Gets a reference to a character within the slice. * * The behavior is undefined if the index is not within the bounds. */ reference operator[](size_type i) const noexcept { return p_beg[i]; } /** @brief Writes a character at the beginning and pops it out. * * @throws std::out_of_range when empty. */ void put(value_type v) { if (p_beg == p_end) { throw std::out_of_range{"put into an empty range"}; } *(p_beg++) = v; } /** @brief Gets the pointer to the beginning. */ value_type *data() noexcept { return p_beg; } /** @brief Gets the pointer to the beginning. */ value_type const *data() const noexcept { return p_beg; } /** @brief Compares two slices. * * This works similarly to the C function `strcmp` or the `compare` * method of std::char_traits, but does not depend on the strings * to be terminated. * * If this slice is empty and the other is not, this method returns * -1. If it's the other way around, it returns 1. If both are empty, * 0 is returned. Otherwise, the `compare` method of traits_type * to compare the data, using the smaller of the lengths as the * count. * * It is not a part of the range interface, just the string slice * interface. * * @see case_compare() */ int compare(basic_char_range s) const noexcept { size_type s1 = size(), s2 = s.size(); int ret; if (!s1 || !s2) { goto diffsize; } if ((ret = TR::compare(data(), s.data(), std::min(s1, s2)))) { return ret; } diffsize: return (s1 < s2) ? -1 : ((s1 > s2) ? 1 : 0); } /** @brief Compares two slices in a case insensitive manner. * * Lexicographically compares the strings like compare(), but in * a case insensitive way. The std::toupper() function is used to * convert the characters to uppercase when comparing. * * Returns a negative value when this slice is less than the other * slice and a positive value when the other way around. Zero is * returned when they're equal. The traits_type is not used to * compare here, as it provides no case-insensitive comparison. */ int case_compare(basic_char_range s) const noexcept { size_type s1 = size(), s2 = s.size(); for (size_type i = 0, ms = std::min(s1, s2); i < ms; ++i) { int d = std::toupper(p_beg[i]) - std::toupper(s[i]); if (d) { return d; } } return (s1 < s2) ? -1 : ((s1 > s2) ? 1 : 0); } /** @brief Implicitly converts a string slice to std::basic_string_view. * * String views represent more or less the same thing but they're always * immutable. This simple conversion allows usage of string slices on * any API that uses either strings or string view, as well as construct * strings and string views out of slices. */ operator std::basic_string_view>() const noexcept { return std::basic_string_view>{data(), size()}; } private: T *p_beg, *p_end; }; /** @brief A mutable slice over `char`. */ using char_range = basic_char_range; /** @brief An immutable slice over `char`. * * This is used in most libostd APIs that read strings. More or less * anything is convertible to it, including mutable slices, so it's * a perfect fit as long as modifications are not necessary. */ using string_range = basic_char_range; /* comparisons between ranges */ /** @brief Like `!lhs.compare(rhs)`. */ template inline bool operator==( basic_char_range lhs, basic_char_range rhs ) noexcept { return !lhs.compare(rhs); } /** @brief Like `lhs.compare(rhs)`. */ template inline bool operator!=( basic_char_range lhs, basic_char_range rhs ) noexcept { return lhs.compare(rhs); } /** @brief Like `lhs.compare(rhs) < 0`. */ template inline bool operator<( basic_char_range lhs, basic_char_range rhs ) noexcept { return lhs.compare(rhs) < 0; } /** @brief Like `lhs.compare(rhs) > 0`. */ template inline bool operator>( basic_char_range lhs, basic_char_range rhs ) noexcept { return lhs.compare(rhs) > 0; } /** @brief Like `lhs.compare(rhs) <= 0`. */ template inline bool operator<=( basic_char_range lhs, basic_char_range rhs ) noexcept { return lhs.compare(rhs) <= 0; } /** @brief Like `lhs.compare(rhs) >= 0`. */ template inline bool operator>=( basic_char_range lhs, basic_char_range rhs ) noexcept { return lhs.compare(rhs) >= 0; } /* comparisons between mutable ranges and char arrays */ /** @brief Like `!lhs.compare(rhs)`. */ template inline bool operator==(basic_char_range lhs, T const *rhs) noexcept { return !lhs.compare(rhs); } /** @brief Like `lhs.compare(rhs)`. */ template inline bool operator!=(basic_char_range lhs, T const *rhs) noexcept { return lhs.compare(rhs); } /** @brief Like `lhs.compare(rhs) < 0`. */ template inline bool operator<(basic_char_range lhs, T const *rhs) noexcept { return lhs.compare(rhs) < 0; } /** @brief Like `lhs.compare(rhs) > 0`. */ template inline bool operator>(basic_char_range lhs, T const *rhs) noexcept { return lhs.compare(rhs) > 0; } /** @brief Like `lhs.compare(rhs) <= 0`. */ template inline bool operator<=(basic_char_range lhs, T const *rhs) noexcept { return lhs.compare(rhs) <= 0; } /** @brief Like `lhs.compare(rhs) >= 0`. */ template inline bool operator>=(basic_char_range lhs, T const *rhs) noexcept { return lhs.compare(rhs) >= 0; } /** @brief Like `!rhs.compare(lhs)`. */ template inline bool operator==(T const *lhs, basic_char_range rhs) noexcept { return !rhs.compare(lhs); } /** @brief Like `rhs.compare(lhs)`. */ template inline bool operator!=(T const *lhs, basic_char_range rhs) noexcept { return rhs.compare(lhs); } /** @brief Like `rhs.compare(lhs) > 0`. */ template inline bool operator<(T const *lhs, basic_char_range rhs) noexcept { return rhs.compare(lhs) > 0; } /** @brief Like `rhs.compare(lhs) < 0`. */ template inline bool operator>(T const *lhs, basic_char_range rhs) noexcept { return rhs.compare(lhs) < 0; } /** @brief Like `rhs.compare(lhs) >= 0`. */ template inline bool operator<=(T const *lhs, basic_char_range rhs) noexcept { return rhs.compare(lhs) >= 0; } /** @brief Like `rhs.compare(lhs) <= 0`. */ template inline bool operator>=(T const *lhs, basic_char_range rhs) noexcept { return rhs.compare(lhs) <= 0; } /* comparisons between immutable ranges and char arrays */ /** @brief Like `!lhs.compare(rhs)`. */ template inline bool operator==( basic_char_range lhs, T const *rhs ) noexcept { return !lhs.compare(rhs); } /** @brief Like `lhs.compare(rhs)`. */ template inline bool operator!=( basic_char_range lhs, T const *rhs ) noexcept { return lhs.compare(rhs); } /** @brief Like `lhs.compare(rhs) < 0`. */ template inline bool operator<( basic_char_range lhs, T const *rhs ) noexcept { return lhs.compare(rhs) < 0; } /** @brief Like `lhs.compare(rhs) > 0`. */ template inline bool operator>( basic_char_range lhs, T const *rhs ) noexcept { return lhs.compare(rhs) > 0; } /** @brief Like `lhs.compare(rhs) <= 0`. */ template inline bool operator<=( basic_char_range lhs, T const *rhs ) noexcept { return lhs.compare(rhs) <= 0; } /** @brief Like `lhs.compare(rhs) >= 0`. */ template inline bool operator>=( basic_char_range lhs, T const *rhs ) noexcept { return lhs.compare(rhs) >= 0; } /** @brief Like `!rhs.compare(lhs)`. */ template inline bool operator==( T const *lhs, basic_char_range rhs ) noexcept { return !rhs.compare(lhs); } /** @brief Like `rhs.compare(lhs)`. */ template inline bool operator!=( T const *lhs, basic_char_range rhs ) noexcept { return rhs.compare(lhs); } /** @brief Like `rhs.compare(lhs) > 0`. */ template inline bool operator<( T const *lhs, basic_char_range rhs ) noexcept { return rhs.compare(lhs) > 0; } /** @brief Like `rhs.compare(lhs) < 0`. */ template inline bool operator>( T const *lhs, basic_char_range rhs ) noexcept { return rhs.compare(lhs) < 0; } /** @brief Like `rhs.compare(lhs) >= 0`. */ template inline bool operator<=( T const *lhs, basic_char_range rhs ) noexcept { return rhs.compare(lhs) >= 0; } /** @brief Like `rhs.compare(lhs) <= 0`. */ template inline bool operator>=( T const *lhs, basic_char_range rhs ) noexcept { return rhs.compare(lhs) <= 0; } /** @brief Checks if a string slice starts with another slice. */ inline bool starts_with(string_range a, string_range b) noexcept { if (a.size() < b.size()) { return false; } return a.slice(0, b.size()) == b; } /** @brief Mutable range integration for std::basic_string. * * The range type used for mutable string references * is an ostd::basic_char_range with mutable values. */ template struct ranged_traits> { /** @brief The range type. */ using range = basic_char_range; /** @brief Creates a range. */ static range iter(std::basic_string &v) noexcept { return range{v.data(), v.data() + v.size()}; } }; /** @brief Immutable range integration for std::basic_string. * * The range type used for immutable string references * is an ostd::basic_char_range with immutable values. */ template struct ranged_traits const> { /** @brief The range type. */ using range = basic_char_range; /** @brief Creates a range. */ static range iter(std::basic_string const &v) noexcept { return range{v.data(), v.data() + v.size()}; } }; /* string literals */ inline namespace literals { inline namespace string_literals { /** @addtogroup Strings * @{ */ /** @brief A custom literal for string ranges. * * You need to enable this explicitly by using this namespace. It's * not enabled by default to ensure compatibility with existing code. */ inline string_range operator "" _sr(char const *str, std::size_t len) noexcept { return string_range(str, str + len); } /** @} */ } } template struct temp_c_string { private: std::remove_cv_t> *p_buf; bool p_allocated; public: temp_c_string() = delete; temp_c_string(temp_c_string const &) = delete; temp_c_string(temp_c_string &&s): p_buf(s.p_buf), p_allocated(s.p_allocated) { s.p_buf = nullptr; s.p_allocated = false; } temp_c_string( R input, std::remove_cv_t> *sbuf, std::size_t bufsize ): p_buf(nullptr), p_allocated(false) { if (input.empty()) { return; } if (input.size() >= bufsize) { p_buf = new std::remove_cv_t>[input.size() + 1]; p_allocated = true; } else { p_buf = sbuf; } char_range bufr{p_buf, p_buf + input.size() + 1}; range_put_all(bufr, input); bufr.put('\0'); } ~temp_c_string() { if (p_allocated) { delete[] p_buf; } } temp_c_string &operator=(temp_c_string const &) = delete; temp_c_string &operator=(temp_c_string &&s) { swap(s); return *this; } operator std::remove_cv_t> const *() const { return p_buf; } std::remove_cv_t> const *get() const { return p_buf; } void swap(temp_c_string &s) { using std::swap; swap(p_buf, s.p_buf); swap(p_allocated, s.p_allocated); } }; template inline void swap(temp_c_string &a, temp_c_string &b) { a.swap(b); } template inline temp_c_string to_temp_cstr( R input, std::remove_cv_t> *buf, std::size_t bufsize ) { return temp_c_string(input, buf, bufsize); } /** @} */ } /* namespace ostd */ namespace std { /** @addtogroup Strings * @{ */ /** @brief Standard std::hash integration for string slices. * * This integrates all possible slice types with standard hashing. * It uses the hashing used for matching std::basic_string_view, * so the algorithm (and thus result) will always match standard strings. */ template struct hash> { std::size_t operator()(ostd::basic_char_range const &v) const noexcept { return hash, TR>>{}(v); } }; /** @} */ } #endif /** @} */