libostd/ostd/string.hh

742 lines
23 KiB
C++

/** @defgroup Strings
*
* @brief Provides string processing extensions.
*
* As libostd provides a range system, it represents string slices as
* contiguous ranges of characters. This has many advantages, such as
* being able to use them with generic algorithms. The string slices are
* not zero terminated, which means creating subslices is very fast, it's
* basically just pointer arithmetic.
*
* Integration with existing string handling facilities is ensured, so you
* can incorporate libostd into any existing project and still benefit from
* the new features.
*
* A simple example:
*
* ~~~{.cc}
* #include <ostd/string.hh>
* #include <ostd/io.hh>
*
* int main() {
* ostd::string_range x = "hello world";
* auto p1 = x.slice(0, 5);
* auto p2 = x.slice(6);
* ostd::writeln(p1); // hello
* ostd::writeln(p2); // world
* }
* ~~~
*
* An example of using libostd string formatting:
*
* @include format.cc
*
* See the examples provided with the library for further information.
*
* @{
*/
/** @file string.hh
*
* @brief String slice implementation as well as other utilities.
*
* This file implements string slices, their comparisons, utilities,
* standard C++ string range integration, range literals, std::hash
* support for string slices and others.
*
* @copyright See COPYING.md in the project tree for further information.
*/
#ifndef OSTD_STRING_HH
#define OSTD_STRING_HH
#include <cstddef>
#include <cctype>
#include <string>
#include <string_view>
#include <type_traits>
#include <functional>
#include <utility>
#include <vector>
#include "ostd/range.hh"
#include "ostd/algorithm.hh"
namespace ostd {
/** @addtogroup Strings
* @{
*/
/** @brief A string slice type.
*
* This is a contiguous range over a character type. The character type
* can be any of the standard character types, of any size - for example
* you would use `char32_t` to represent UTF-32 slices. The std::char_traits
* structure (or its equivalent) is used for the basic string operations
* where possible.
*
* The range is mutable, i.e. it implements the output range interface.
*/
template<typename T, typename TR = std::char_traits<std::remove_const_t<T>>>
struct basic_char_range: input_range<basic_char_range<T>> {
using range_category = contiguous_range_tag;
using value_type = T;
using reference = T &;
using size_type = std::size_t;
using traits_type = TR;
private:
struct nat {};
public:
/** @brief Constructs an empty slice. */
basic_char_range() noexcept: p_beg(nullptr), p_end(nullptr) {};
/** @brief Constructs a slice from two pointers.
*
* The first pointer is the beginning of the slice
* and the second pointer is just past the end.
*/
basic_char_range(value_type *beg, value_type *end) noexcept:
p_beg(beg), p_end(end)
{}
/** @brief Constructs an empty slice. */
basic_char_range(std::nullptr_t) noexcept:
p_beg(nullptr), p_end(nullptr)
{}
/** @brief Constructs a slice from a pointer or a static array.
*
* This constructor handles two cases. The input must be convertible
* to `T *`, if it's not, this constructor is not enabled. Effectively,
* if the input is a static array of `T`, the entire array is used to
* create the slice, minus the potential zero at the end. If there is
* no zero at the end, nothing is removed and the array is used whole.
* If the input is not an array, the size is not known at compile time
* and the traits_type is used to check the length.
*/
template<typename U>
basic_char_range(U &&beg, std::enable_if_t<
std::is_convertible_v<U, value_type *>, nat
> = nat{}) noexcept: p_beg(beg) {
if constexpr(std::is_array_v<std::remove_reference_t<U>>) {
std::size_t N = std::extent_v<std::remove_reference_t<U>>;
p_end = beg + N - (beg[N - 1] == '\0');
} else {
p_end = beg + (beg ? TR::length(beg) : 0);
}
}
/** @brief Constructs a slice from an std::basic_string.
*
* This uses the string's data to construct a matching slice.
*/
template<typename STR, typename A>
basic_char_range(
std::basic_string<std::remove_const_t<value_type>, STR, A> const &s
) noexcept:
p_beg(s.data()), p_end(s.data() + s.size())
{}
/** @brief Constructs a slice from a different but compatible slice.
*
* The other slice can use any traits type, but a pointer to the
* other slice's value type must be convertible to a pointer to
* the new slice's value type, otherwise the constructor will not
* be enabled.
*/
template<typename U, typename TTR, typename = std::enable_if_t<
std::is_convertible_v<U *, value_type *>
>>
basic_char_range(basic_char_range<U, TTR> const &v) noexcept:
p_beg(&v[0]), p_end(&v[v.size()])
{}
/** @brief Slices are arbitrarily copy constructible. */
basic_char_range &operator=(basic_char_range const &v) noexcept {
p_beg = v.p_beg; p_end = v.p_end; return *this;
}
/** @brief Assigns the slice's data from a matching std::basic_string.
*
* The string does not have to be using a matching traits type.
*/
template<typename STR, typename A>
basic_char_range &operator=(
std::basic_string<value_type, STR, A> const &s
) noexcept {
p_beg = s.data(); p_end = s.data() + s.size(); return *this;
}
/** @brief Assigns the slice's data from a pointer.
*
* The data pointed to by the argument must be zero terminated.
* The traits_type is used to check the length of the string.
*/
basic_char_range &operator=(value_type *s) noexcept {
p_beg = s; p_end = s + (s ? TR::length(s) : 0); return *this;
}
/** @brief Checks if the slice is empty. */
bool empty() const noexcept { return p_beg == p_end; }
/** @brief Pops the first character out of the slice.
*
* This is bounds checked, std::out_of_range is thrown when
* slice was already empty before popping out the character.
* No changes are done to the slice if it throws.
*
* @throws std::out_of_range when empty.
*
* @see front(), pop_back()
*/
void pop_front() {
if (p_beg == p_end) {
throw std::out_of_range{"pop_front on empty range"};
}
++p_beg;
}
/** @brief Gets a reference to the first character.
*
* The behavior is undefined when the slice is empty.
*
* @see back(), pop_front()
*/
reference front() const noexcept { return *p_beg; }
/** @brief Pops the last character out of the slice.
*
* This is bounds checked, std::out_of_range is thrown when
* slice was already empty before popping out the character.
* No changes are done to the slice if it throws.
*
* @throws std::out_of_range when empty.
*
* @see back(), pop_front()
*/
void pop_back() {
if (p_beg == p_end) {
throw std::out_of_range{"pop_back on empty range"};
}
--p_end;
}
/** @brief Gets a reference to the last character.
*
* The behavior is undefined when the slice is empty.
*
* @see front(), pop_back()
*/
reference back() const noexcept { return *(p_end - 1); }
/** @brief Gets the number of value_type in the slice. */
size_type size() const noexcept { return p_end - p_beg; }
/** @brief Creates a sub-slice of the slice.
*
* Behavior is undefined if `start` and `end` are not within the
* slice's bounds. There is no bound checking done in this call.
* It's also undefined if the first argument is larger than the
* second argument.
*/
basic_char_range slice(size_type start, size_type end) const noexcept {
return basic_char_range(p_beg + start, p_beg + end);
}
/** @brief Creates a sub-slice of the slice until the end.
*
* Equivalent to slice(size_type, size_type) with `size()` as
* the second argument. The first argument must be within the
* slice's boundaries otherwis the behavior is undefined.
*/
basic_char_range slice(size_type start) const noexcept {
return slice(start, size());
}
/** @brief Gets a reference to a character within the slice.
*
* The behavior is undefined if the index is not within the bounds.
*/
reference operator[](size_type i) const noexcept { return p_beg[i]; }
/** @brief Writes a character at the beginning and pops it out.
*
* @throws std::out_of_range when empty.
*/
void put(value_type v) {
if (p_beg == p_end) {
throw std::out_of_range{"put into an empty range"};
}
*(p_beg++) = v;
}
/** @brief Gets the pointer to the beginning. */
value_type *data() noexcept { return p_beg; }
/** @brief Gets the pointer to the beginning. */
value_type const *data() const noexcept { return p_beg; }
/** @brief Compares two slices.
*
* This works similarly to the C function `strcmp` or the `compare`
* method of std::char_traits, but does not depend on the strings
* to be terminated.
*
* If this slice is empty and the other is not, this method returns
* -1. If it's the other way around, it returns 1. If both are empty,
* 0 is returned. Otherwise, the `compare` method of traits_type
* to compare the data, using the smaller of the lengths as the
* count.
*
* It is not a part of the range interface, just the string slice
* interface.
*
* @see case_compare()
*/
int compare(basic_char_range<value_type const> s) const noexcept {
size_type s1 = size(), s2 = s.size();
int ret;
if (!s1 || !s2) {
goto diffsize;
}
if ((ret = TR::compare(data(), s.data(), std::min(s1, s2)))) {
return ret;
}
diffsize:
return (s1 < s2) ? -1 : ((s1 > s2) ? 1 : 0);
}
/** @brief Compares two slices in a case insensitive manner.
*
* Lexicographically compares the strings like compare(), but in
* a case insensitive way. The std::toupper() function is used to
* convert the characters to uppercase when comparing.
*
* Returns a negative value when this slice is less than the other
* slice and a positive value when the other way around. Zero is
* returned when they're equal. The traits_type is not used to
* compare here, as it provides no case-insensitive comparison.
*/
int case_compare(basic_char_range<value_type const> s) const noexcept {
size_type s1 = size(), s2 = s.size();
for (size_type i = 0, ms = std::min(s1, s2); i < ms; ++i) {
int d = std::toupper(p_beg[i]) - std::toupper(s[i]);
if (d) {
return d;
}
}
return (s1 < s2) ? -1 : ((s1 > s2) ? 1 : 0);
}
/** @brief Implicitly converts a string slice to std::basic_string_view.
*
* String views represent more or less the same thing but they're always
* immutable. This simple conversion allows usage of string slices on
* any API that uses either strings or string view, as well as construct
* strings and string views out of slices.
*/
operator std::basic_string_view<std::remove_cv_t<value_type>>()
const noexcept
{
return std::basic_string_view<std::remove_cv_t<T>>{data(), size()};
}
private:
T *p_beg, *p_end;
};
/** @brief A mutable slice over `char`. */
using char_range = basic_char_range<char>;
/** @brief An immutable slice over `char`.
*
* This is used in most libostd APIs that read strings. More or less
* anything is convertible to it, including mutable slices, so it's
* a perfect fit as long as modifications are not necessary.
*/
using string_range = basic_char_range<char const>;
/* comparisons between ranges */
/** @brief Like `!lhs.compare(rhs)`. */
template<typename T, typename U, typename TR>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator==(
basic_char_range<T, TR> lhs, basic_char_range<U, TR> rhs
) noexcept {
return !lhs.compare(rhs);
}
/** @brief Like `lhs.compare(rhs)`. */
template<typename T, typename U, typename TR>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator!=(
basic_char_range<T, TR> lhs, basic_char_range<U, TR> rhs
) noexcept {
return lhs.compare(rhs);
}
/** @brief Like `lhs.compare(rhs) < 0`. */
template<typename T, typename U, typename TR>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<(
basic_char_range<T, TR> lhs, basic_char_range<U, TR> rhs
) noexcept {
return lhs.compare(rhs) < 0;
}
/** @brief Like `lhs.compare(rhs) > 0`. */
template<typename T, typename U, typename TR>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>(
basic_char_range<T, TR> lhs, basic_char_range<U, TR> rhs
) noexcept {
return lhs.compare(rhs) > 0;
}
/** @brief Like `lhs.compare(rhs) <= 0`. */
template<typename T, typename U, typename TR>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<=(
basic_char_range<T, TR> lhs, basic_char_range<U, TR> rhs
) noexcept {
return lhs.compare(rhs) <= 0;
}
/** @brief Like `lhs.compare(rhs) >= 0`. */
template<typename T, typename U, typename TR>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>=(
basic_char_range<T, TR> lhs, basic_char_range<U, TR> rhs
) noexcept {
return lhs.compare(rhs) >= 0;
}
/* comparisons between ranges and char arrays */
/** @brief Like `!lhs.compare(rhs)`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator==(basic_char_range<T, TR> lhs, U *rhs) noexcept {
return !lhs.compare(rhs);
}
/** @brief Like `lhs.compare(rhs)`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator!=(basic_char_range<T, TR> lhs, U *rhs) noexcept {
return lhs.compare(rhs);
}
/** @brief Like `lhs.compare(rhs) < 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<(basic_char_range<T, TR> lhs, U *rhs) noexcept {
return lhs.compare(rhs) < 0;
}
/** @brief Like `lhs.compare(rhs) > 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>(basic_char_range<T, TR> lhs, U *rhs) noexcept {
return lhs.compare(rhs) > 0;
}
/** @brief Like `lhs.compare(rhs) <= 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<=(basic_char_range<T, TR> lhs, U *rhs) noexcept {
return lhs.compare(rhs) <= 0;
}
/** @brief Like `lhs.compare(rhs) >= 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>=(basic_char_range<T, TR> lhs, U *rhs) noexcept {
return lhs.compare(rhs) >= 0;
}
/** @brief Like `!rhs.compare(lhs)`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator==(U *lhs, basic_char_range<T, TR> rhs) noexcept {
return !rhs.compare(lhs);
}
/** @brief Like `rhs.compare(lhs)`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator!=(U *lhs, basic_char_range<T, TR> rhs) noexcept {
return rhs.compare(lhs);
}
/** @brief Like `rhs.compare(lhs) > 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<(U *lhs, basic_char_range<T, TR> rhs) noexcept {
return rhs.compare(lhs) > 0;
}
/** @brief Like `rhs.compare(lhs) < 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>(U *lhs, basic_char_range<T, TR> rhs) noexcept {
return rhs.compare(lhs) < 0;
}
/** @brief Like `rhs.compare(lhs) >= 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<=(U *lhs, basic_char_range<T, TR> rhs) noexcept {
return rhs.compare(lhs) >= 0;
}
/** @brief Like `rhs.compare(lhs) <= 0`. */
template<typename T, typename TR, typename U>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>=(U *lhs, basic_char_range<T, TR> rhs) noexcept {
return rhs.compare(lhs) <= 0;
}
/* comparisons between ranges and stdlib strings */
/** @brief Like `!lhs.compare(rhs)`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator==(
basic_char_range<T, TR> lhs, std::basic_string<U, TR, A> const &rhs
) noexcept {
return !lhs.compare(rhs);
}
/** @brief Like `lhs.compare(rhs)`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator!=(
basic_char_range<T, TR> lhs, std::basic_string<U, TR, A> const &rhs
) noexcept {
return lhs.compare(rhs);
}
/** @brief Like `lhs.compare(rhs) < 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<(
basic_char_range<T, TR> lhs, std::basic_string<U, TR, A> const &rhs
) noexcept {
return lhs.compare(rhs) < 0;
}
/** @brief Like `lhs.compare(rhs) > 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>(
basic_char_range<T, TR> lhs, std::basic_string<U, TR, A> const &rhs
) noexcept {
return lhs.compare(rhs) > 0;
}
/** @brief Like `lhs.compare(rhs) <= 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<=(
basic_char_range<T, TR> lhs, std::basic_string<U, TR, A> const &rhs
) noexcept {
return lhs.compare(rhs) <= 0;
}
/** @brief Like `lhs.compare(rhs) >= 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>=(
basic_char_range<T, TR> lhs, std::basic_string<U, TR, A> const &rhs
) noexcept {
return lhs.compare(rhs) >= 0;
}
/** @brief Like `!rhs.compare(lhs)`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator==(
std::basic_string<U, TR, A> const &lhs, basic_char_range<T, TR> rhs
) noexcept {
return !rhs.compare(lhs);
}
/** @brief Like `rhs.compare(lhs)`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator!=(
std::basic_string<U, TR, A> const &lhs, basic_char_range<T, TR> rhs
) noexcept {
return rhs.compare(lhs);
}
/** @brief Like `rhs.compare(lhs) > 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<(
std::basic_string<U, TR, A> const &lhs, basic_char_range<T, TR> rhs
) noexcept {
return rhs.compare(lhs) > 0;
}
/** @brief Like `rhs.compare(lhs) < 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>(
std::basic_string<U, TR, A> const &lhs, basic_char_range<T, TR> rhs
) noexcept {
return rhs.compare(lhs) < 0;
}
/** @brief Like `rhs.compare(lhs) >= 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator<=(
std::basic_string<U, TR, A> const &lhs, basic_char_range<T, TR> rhs
) noexcept {
return rhs.compare(lhs) >= 0;
}
/** @brief Like `rhs.compare(lhs) <= 0`. */
template<typename T, typename TR, typename U, typename A>
inline std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>, bool
> operator>=(
std::basic_string<U, TR, A> const &lhs, basic_char_range<T, TR> rhs
) noexcept {
return rhs.compare(lhs) <= 0;
}
/** @brief Checks if a string slice starts with another slice. */
inline bool starts_with(string_range a, string_range b) noexcept {
if (a.size() < b.size()) {
return false;
}
return a.slice(0, b.size()) == b;
}
/** @brief Mutable range integration for std::basic_string.
*
* The range type used for mutable string references
* is an ostd::basic_char_range with mutable values.
*/
template<typename T, typename TR, typename A>
struct ranged_traits<std::basic_string<T, TR, A>> {
/** @brief The range type. */
using range = basic_char_range<T, TR>;
/** @brief Creates a range. */
static range iter(std::basic_string<T, TR, A> &v) noexcept {
return range{v.data(), v.data() + v.size()};
}
};
/** @brief Immutable range integration for std::basic_string.
*
* The range type used for immutable string references
* is an ostd::basic_char_range with immutable values.
*/
template<typename T, typename TR, typename A>
struct ranged_traits<std::basic_string<T, TR, A> const> {
/** @brief The range type. */
using range = basic_char_range<T const, TR>;
/** @brief Creates a range. */
static range iter(std::basic_string<T, TR, A> const &v) noexcept {
return range{v.data(), v.data() + v.size()};
}
};
/* string literals */
inline namespace literals {
inline namespace string_literals {
/** @addtogroup Strings
* @{
*/
/** @brief A custom literal for string ranges.
*
* You need to enable this explicitly by using this namespace. It's
* not enabled by default to ensure compatibility with existing code.
*/
inline string_range operator "" _sr(char const *str, std::size_t len)
noexcept
{
return string_range(str, str + len);
}
/** @} */
}
}
/** @} */
} /* namespace ostd */
namespace std {
/** @addtogroup Strings
* @{
*/
/** @brief Standard std::hash integration for string slices.
*
* This integrates all possible slice types with standard hashing.
* It uses the hashing used for matching std::basic_string_view,
* so the algorithm (and thus result) will always match standard strings.
*/
template<typename T, typename TR>
struct hash<ostd::basic_char_range<T, TR>> {
std::size_t operator()(ostd::basic_char_range<T, TR> const &v)
const noexcept
{
return hash<std::basic_string_view<std::remove_const_t<T>, TR>>{}(v);
}
};
/** @} */
}
#endif
/** @} */