libostd/ostd/algorithm.hh

870 lines
23 KiB
C++

/* Algorithms for libostd.
*
* This file is part of libostd. See COPYING.md for futher information.
*/
#ifndef OSTD_ALGORITHM_HH
#define OSTD_ALGORITHM_HH
#include <math.h>
#include <utility>
#include <functional>
#include <type_traits>
#include <algorithm>
#include "ostd/range.hh"
namespace ostd {
/* partitioning */
template<typename R, typename U>
inline R partition(R range, U pred) {
R ret = range;
for (; !range.empty(); range.pop_front()) {
if (pred(range.front())) {
using std::swap;
swap(range.front(), ret.front());
ret.pop_front();
}
}
return ret;
}
template<typename F>
inline auto partition(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return partition(
std::forward<decltype(obj)>(obj), std::forward<F>(func)
);
};
}
template<typename R, typename P>
inline bool is_partitioned(R range, P pred) {
for (; !range.empty() && pred(range.front()); range.pop_front());
for (; !range.empty(); range.pop_front()) {
if (pred(range.front())) {
return false;
}
}
return true;
}
template<typename F>
inline auto is_partitioned(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return is_partitioned(
std::forward<decltype(obj)>(obj), std::forward<F>(func)
);
};
}
/* sorting */
namespace detail {
template<typename R, typename C>
static void insort(R range, C &compare) {
range_size_t<R> rlen = range.size();
for (range_size_t<R> i = 1; i < rlen; ++i) {
range_size_t<R> j = i;
range_value_t<R> v{std::move(range[i])};
while (j > 0 && !compare(range[j - 1], v)) {
range[j] = std::move(range[j - 1]);
--j;
}
range[j] = std::move(v);
}
}
template<typename R, typename C>
static void hs_sift_down(
R range, range_size_t<R> s, range_size_t<R> e, C &compare
) {
range_size_t<R> r = s;
while ((r * 2 + 1) <= e) {
range_size_t<R> ch = r * 2 + 1;
range_size_t<R> sw = r;
if (compare(range[sw], range[ch])) {
sw = ch;
}
if (((ch + 1) <= e) && compare(range[sw], range[ch + 1])) {
sw = ch + 1;
}
if (sw != r) {
using std::swap;
swap(range[r], range[sw]);
r = sw;
} else {
return;
}
}
}
template<typename R, typename C>
static void heapsort(R range, C &compare) {
range_size_t<R> len = range.size();
range_size_t<R> st = (len - 2) / 2;
for (;;) {
detail::hs_sift_down(range, st, len - 1, compare);
if (st-- == 0) {
break;
}
}
range_size_t<R> e = len - 1;
while (e > 0) {
using std::swap;
swap(range[e], range[0]);
--e;
detail::hs_sift_down(range, 0, e, compare);
}
}
template<typename R, typename C>
static void introloop(R range, C &compare, range_size_t<R> depth) {
using std::swap;
if (range.size() <= 10) {
detail::insort(range, compare);
return;
}
if (depth == 0) {
detail::heapsort(range, compare);
return;
}
swap(range[range.size() / 2], range.back());
range_size_t<R> pi = 0;
R pr = range;
pr.pop_back();
for (; !pr.empty(); pr.pop_front()) {
if (compare(pr.front(), range.back())) {
swap(pr.front(), range[pi++]);
}
}
swap(range[pi], range.back());
detail::introloop(range.slice(0, pi), compare, depth - 1);
detail::introloop(range.slice(pi + 1), compare, depth - 1);
}
template<typename R, typename C>
inline void introsort(R range, C &compare) {
detail::introloop(
range, compare,
static_cast<range_size_t<R>>(2 * (log(range.size()) / log(2)))
);
}
} /* namespace detail */
template<typename R, typename C>
inline R sort_cmp(R range, C compare) {
detail::introsort(range, compare);
return range;
}
template<typename C>
inline auto sort_cmp(C &&compare) {
return [compare = std::forward<C>(compare)](auto &&obj) mutable {
return sort_cmp(
std::forward<decltype(obj)>(obj), std::forward<C>(compare)
);
};
}
template<typename R>
inline R sort(R range) {
return sort_cmp(range, std::less<range_value_t<R>>());
}
inline auto sort() {
return [](auto &&obj) { return sort(std::forward<decltype(obj)>(obj)); };
}
/* min/max(_element) */
template<typename R>
inline R min_element(R range) {
R r = range;
for (; !range.empty(); range.pop_front()) {
if (std::min(r.front(), range.front()) == range.front()) {
r = range;
}
}
return r;
}
template<typename R, typename C>
inline R min_element_cmp(R range, C compare) {
R r = range;
for (; !range.empty(); range.pop_front()) {
if (std::min(r.front(), range.front(), compare) == range.front()) {
r = range;
}
}
return r;
}
inline auto min_element() {
return [](auto &&obj) {
return min_element(std::forward<decltype(obj)>(obj));
};
}
template<typename C>
inline auto min_element_cmp(C &&compare) {
return [compare = std::forward<C>(compare)](auto &&obj) mutable {
return min_element_cmp(
std::forward<decltype(obj)>(obj), std::forward<C>(compare)
);
};
}
template<typename R>
inline R max_element(R range) {
R r = range;
for (; !range.empty(); range.pop_front()) {
if (std::max(r.front(), range.front()) == range.front()) {
r = range;
}
}
return r;
}
template<typename R, typename C>
inline R max_element_cmp(R range, C compare) {
R r = range;
for (; !range.empty(); range.pop_front()) {
if (std::max(r.front(), range.front(), compare) == range.front()) {
r = range;
}
}
return r;
}
inline auto max_element() {
return [](auto &&obj) {
return max_element(std::forward<decltype(obj)>(obj));
};
}
template<typename C>
inline auto max_element_cmp(C &&compare) {
return [compare = std::forward<C>(compare)](auto &&obj) mutable {
return max_element_cmp(
std::forward<decltype(obj)>(obj), std::forward<C>(compare)
);
};
}
/* lexicographical compare */
template<typename R1, typename R2>
inline bool lexicographical_compare(R1 range1, R2 range2) {
while (!range1.empty() && !range2.empty()) {
if (range1.front() < range2.front()) {
return true;
}
if (range2.front() < range1.front()) {
return false;
}
range1.pop_front();
range2.pop_front();
}
return (range1.empty() && !range2.empty());
}
template<typename R>
inline auto lexicographical_compare(R &&range) {
return [range = std::forward<R>(range)](auto &&obj) mutable {
return lexicographical_compare(
std::forward<decltype(obj)>(obj), std::forward<R>(range)
);
};
}
template<typename R1, typename R2, typename C>
inline bool lexicographical_compare_cmp(R1 range1, R2 range2, C compare) {
while (!range1.empty() && !range2.empty()) {
if (compare(range1.front(), range2.front())) {
return true;
}
if (compare(range2.front(), range1.front())) {
return false;
}
range1.pop_front();
range2.pop_front();
}
return (range1.empty() && !range2.empty());
}
template<typename R, typename C>
inline auto lexicographical_compare_cmp(R &&range, C &&compare) {
return [
range = std::forward<R>(range), compare = std::forward<C>(compare)
](auto &&obj) mutable {
return lexicographical_compare_cmp(
std::forward<decltype(obj)>(obj), std::forward<R>(range),
std::forward<C>(compare)
);
};
}
/* algos that don't change the range */
template<typename R, typename F>
inline F for_each(R range, F func) {
for (; !range.empty(); range.pop_front()) {
func(range.front());
}
return std::move(func);
}
template<typename F>
inline auto for_each(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return for_each(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
template<typename R, typename P>
inline bool all_of(R range, P pred) {
for (; !range.empty(); range.pop_front()) {
if (!pred(range.front())) {
return false;
}
}
return true;
}
template<typename F>
inline auto all_of(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return all_of(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
template<typename R, typename P>
inline bool any_of(R range, P pred) {
for (; !range.empty(); range.pop_front())
if (pred(range.front())) return true;
return false;
}
template<typename F>
inline auto any_of(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return any_of(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
template<typename R, typename P>
inline bool none_of(R range, P pred) {
for (; !range.empty(); range.pop_front())
if (pred(range.front())) return false;
return true;
}
template<typename F>
inline auto none_of(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return none_of(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
template<typename R, typename T>
inline R find(R range, T const &v) {
for (; !range.empty(); range.pop_front()) {
if (range.front() == v) {
break;
}
}
return range;
}
template<typename T>
inline auto find(T &&v) {
return [v = std::forward<T>(v)](auto &&obj) mutable {
return find(std::forward<decltype(obj)>(obj), std::forward<T>(v));
};
}
template<typename R, typename T>
inline R find_last(R range, T const &v) {
range = find(range, v);
if (!range.empty()) {
for (;;) {
R prev = range;
prev.pop_front();
R r = find(prev, v);
if (r.empty()) {
break;
}
range = r;
}
}
return range;
}
template<typename T>
inline auto find_last(T &&v) {
return [v = std::forward<T>(v)](auto &&obj) mutable {
return find_last(std::forward<decltype(obj)>(obj), std::forward<T>(v));
};
}
template<typename R, typename P>
inline R find_if(R range, P pred) {
for (; !range.empty(); range.pop_front()) {
if (pred(range.front())) {
break;
}
}
return range;
}
template<typename F>
inline auto find_if(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return find_if(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
template<typename R, typename P>
inline R find_if_not(R range, P pred) {
for (; !range.empty(); range.pop_front()) {
if (!pred(range.front())) {
break;
}
}
return range;
}
template<typename F>
inline auto find_if_not(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return find_if_not(
std::forward<decltype(obj)>(obj), std::forward<F>(func)
);
};
}
template<typename R1, typename R2, typename C>
inline R1 find_one_of_cmp(R1 range, R2 values, C compare) {
for (; !range.empty(); range.pop_front()) {
for (R2 rv = values; !rv.empty(); rv.pop_front()) {
if (compare(range.front(), rv.front())) {
return range;
}
}
}
return range;
}
template<typename R, typename C>
inline auto find_one_of_cmp(R &&values, C &&compare) {
return [
values = std::forward<R>(values), compare = std::forward<C>(compare)
](auto &&obj) mutable {
return find_one_of_cmp(
std::forward<decltype(obj)>(obj), std::forward<R>(values),
std::forward<C>(compare)
);
};
}
template<typename R1, typename R2>
inline R1 find_one_of(R1 range, R2 values) {
for (; !range.empty(); range.pop_front()) {
for (R2 rv = values; !rv.empty(); rv.pop_front()) {
if (range.front() == rv.front()) {
return range;
}
}
}
return range;
}
template<typename R>
inline auto find_one_of(R &&values) {
return [values = std::forward<R>(values)](auto &&obj) mutable {
return find_one_of(
std::forward<decltype(obj)>(obj), std::forward<R>(values)
);
};
}
template<typename R, typename T>
inline range_size_t<R> count(R range, T const &v) {
range_size_t<R> ret = 0;
for (; !range.empty(); range.pop_front()) {
if (range.front() == v) {
++ret;
}
}
return ret;
}
template<typename T>
inline auto count(T &&v) {
return [v = std::forward<T>(v)](auto &&obj) mutable {
return count(std::forward<decltype(obj)>(obj), std::forward<T>(v));
};
}
template<typename R, typename P>
inline range_size_t<R> count_if(R range, P pred) {
range_size_t<R> ret = 0;
for (; !range.empty(); range.pop_front()) {
if (pred(range.front())) {
++ret;
}
}
return ret;
}
template<typename F>
inline auto count_if(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return count_if(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
template<typename R, typename P>
inline range_size_t<R> count_if_not(R range, P pred) {
range_size_t<R> ret = 0;
for (; !range.empty(); range.pop_front()) {
if (!pred(range.front())) {
++ret;
}
}
return ret;
}
template<typename F>
inline auto count_if_not(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return count_if_not(
std::forward<decltype(obj)>(obj), std::forward<F>(func)
);
};
}
template<typename R>
inline bool equal(R range1, R range2) {
for (; !range1.empty(); range1.pop_front()) {
if (range2.empty() || (range1.front() != range2.front())) {
return false;
}
range2.pop_front();
}
return range2.empty();
}
template<typename R>
inline auto equal(R &&range) {
return [range = std::forward<R>(range)](auto &&obj) mutable {
return equal(std::forward<decltype(obj)>(obj), std::forward<R>(range));
};
}
/* algos that modify ranges or work with output ranges */
template<typename R1, typename R2>
inline R2 copy(R1 irange, R2 orange) {
range_put_all(orange, irange);
return orange;
}
template<typename R1, typename R2, typename P>
inline R2 copy_if(R1 irange, R2 orange, P pred) {
for (; !irange.empty(); irange.pop_front()) {
if (pred(irange.front())) {
orange.put(irange.front());
}
}
return orange;
}
template<typename R1, typename R2, typename P>
inline R2 copy_if_not(R1 irange, R2 orange, P pred) {
for (; !irange.empty(); irange.pop_front()) {
if (!pred(irange.front())) {
orange.put(irange.front());
}
}
return orange;
}
template<typename R1, typename R2>
inline R2 move(R1 irange, R2 orange) {
for (; !irange.empty(); irange.pop_front()) {
orange.put(std::move(irange.front()));
}
return orange;
}
template<typename R>
inline void reverse(R range) {
while (!range.empty()) {
using std::swap;
swap(range.front(), range.back());
range.pop_front();
range.pop_back();
}
}
template<typename R1, typename R2>
inline R2 reverse_copy(R1 irange, R2 orange) {
for (; !irange.empty(); irange.pop_back()) {
orange.put(irange.back());
}
return orange;
}
template<typename R, typename T>
inline void fill(R range, T const &v) {
for (; !range.empty(); range.pop_front()) {
range.front() = v;
}
}
template<typename R, typename F>
inline void generate(R range, F gen) {
for (; !range.empty(); range.pop_front()) {
range.front() = gen();
}
}
template<typename R1, typename R2>
inline std::pair<R1, R2> swap_ranges(R1 range1, R2 range2) {
while (!range1.empty() && !range2.empty()) {
using std::swap;
swap(range1.front(), range2.front());
range1.pop_front();
range2.pop_front();
}
return std::make_pair(range1, range2);
}
template<typename R, typename T>
inline void iota(R range, T value) {
for (; !range.empty(); range.pop_front()) {
range.front() = value++;
}
}
template<typename R, typename T>
inline T foldl(R range, T init) {
for (; !range.empty(); range.pop_front()) {
init = init + range.front();
}
return init;
}
template<typename R, typename T, typename F>
inline T foldl_f(R range, T init, F func) {
for (; !range.empty(); range.pop_front()) {
init = func(init, range.front());
}
return init;
}
template<typename T>
inline auto foldl(T &&init) {
return [init = std::forward<T>(init)](auto &&obj) mutable {
return foldl(std::forward<decltype(obj)>(obj), std::forward<T>(init));
};
}
template<typename T, typename F>
inline auto foldl_f(T &&init, F &&func) {
return [
init = std::forward<T>(init), func = std::forward<F>(func)
](auto &&obj) mutable {
return foldl_f(
std::forward<decltype(obj)>(obj), std::forward<T>(init),
std::forward<F>(func)
);
};
}
template<typename R, typename T>
inline T foldr(R range, T init) {
for (; !range.empty(); range.pop_back()) {
init = init + range.back();
}
return init;
}
template<typename R, typename T, typename F>
inline T foldr_f(R range, T init, F func) {
for (; !range.empty(); range.pop_back()) {
init = func(init, range.back());
}
return init;
}
template<typename T>
inline auto foldr(T &&init) {
return [init = std::forward<T>(init)](auto &&obj) mutable {
return foldr(std::forward<decltype(obj)>(obj), std::forward<T>(init));
};
}
template<typename T, typename F>
inline auto foldr_f(T &&init, F &&func) {
return [
init = std::forward<T>(init), func = std::forward<F>(func)
](auto &&obj) mutable {
return foldr_f(
std::forward<decltype(obj)>(obj), std::forward<T>(init),
std::forward<F>(func)
);
};
}
template<typename T, typename F, typename R>
struct map_range: input_range<map_range<T, F, R>> {
using range_category = std::common_type_t<
range_category_t<T>, finite_random_access_range_tag
>;
using value_type = R;
using reference = R;
using size_type = range_size_t<T>;
using difference_type = range_difference_t<T>;
private:
T p_range;
std::decay_t<F> p_func;
public:
map_range() = delete;
template<typename FF>
map_range(T const &range, FF &&func):
p_range(range), p_func(std::forward<FF>(func)) {}
map_range(map_range const &it):
p_range(it.p_range), p_func(it.p_func) {}
map_range(map_range &&it):
p_range(std::move(it.p_range)), p_func(std::move(it.p_func)) {}
map_range &operator=(map_range const &v) {
p_range = v.p_range;
p_func = v.p_func;
return *this;
}
map_range &operator=(map_range &&v) {
p_range = std::move(v.p_range);
p_func = std::move(v.p_func);
return *this;
}
bool empty() const { return p_range.empty(); }
size_type size() const { return p_range.size(); }
void pop_front() { p_range.pop_front(); }
void pop_back() { p_range.pop_back(); }
R front() const { return p_func(p_range.front()); }
R back() const { return p_func(p_range.back()); }
R operator[](size_type idx) const {
return p_func(p_range[idx]);
}
map_range slice(size_type start, size_type end) const {
return map_range(p_range.slice(start, end), p_func);
}
map_range slice(size_type start) const {
return slice(start, size());
}
};
namespace detail {
template<typename R, typename F>
using MapReturnType = decltype(
std::declval<F>()(std::declval<range_reference_t<R>>())
);
}
template<typename R, typename F>
inline map_range<R, F, detail::MapReturnType<R, F>> map(R range, F func) {
return map_range<R, F, detail::MapReturnType<R, F>>(range, std::move(func));
}
template<typename F>
inline auto map(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return map(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
template<typename T, typename F>
struct filter_range: input_range<filter_range<T, F>> {
using range_category = std::common_type_t<
range_category_t<T>, forward_range_tag
>;
using value_type = range_value_t<T>;
using reference = range_reference_t<T>;
using size_type = range_size_t<T>;
using difference_type = range_difference_t<T>;
private:
T p_range;
std::decay_t<F> p_pred;
void advance_valid() {
while (!p_range.empty() && !p_pred(front())) {
p_range.pop_front();
}
}
public:
filter_range() = delete;
template<typename P>
filter_range(T const &range, P &&pred):
p_range(range), p_pred(std::forward<P>(pred))
{
advance_valid();
}
filter_range(filter_range const &it):
p_range(it.p_range), p_pred(it.p_pred)
{
advance_valid();
}
filter_range(filter_range &&it):
p_range(std::move(it.p_range)), p_pred(std::move(it.p_pred))
{
advance_valid();
}
filter_range &operator=(filter_range const &v) {
p_range = v.p_range;
p_pred = v.p_pred;
advance_valid();
return *this;
}
filter_range &operator=(filter_range &&v) {
p_range = std::move(v.p_range);
p_pred = std::move(v.p_pred);
advance_valid();
return *this;
}
bool empty() const { return p_range.empty(); }
void pop_front() {
p_range.pop_front();
advance_valid();
}
range_reference_t<T> front() const { return p_range.front(); }
};
namespace detail {
template<typename R, typename P>
using FilterPred = std::enable_if_t<std::is_same_v<
decltype(std::declval<P>()(std::declval<range_reference_t<R>>())), bool
>, P>;
}
template<typename R, typename P>
inline filter_range<R, detail::FilterPred<R, P>> filter(R range, P pred) {
return filter_range<R, P>(range, std::move(pred));
}
template<typename F>
inline auto filter(F &&func) {
return [func = std::forward<F>(func)](auto &&obj) mutable {
return filter(std::forward<decltype(obj)>(obj), std::forward<F>(func));
};
}
} /* namespace ostd */
#endif