libostd/octa/range.h

952 lines
28 KiB
C++

/* Ranges for OctaSTD.
*
* This file is part of OctaSTD. See COPYING.md for futher information.
*/
#ifndef OCTA_RANGE_H
#define OCTA_RANGE_H
#include <stddef.h>
#include "octa/types.h"
#include "octa/utility.h"
#include "octa/type_traits.h"
namespace octa {
struct InputRangeTag {};
struct OutputRangeTag {};
struct ForwardRangeTag: InputRangeTag {};
struct BidirectionalRangeTag: ForwardRangeTag {};
struct RandomAccessRangeTag: BidirectionalRangeTag {};
struct FiniteRandomAccessRangeTag: RandomAccessRangeTag {};
template<typename T> struct RangeHalf;
#define __OCTA_RANGE_TRAIT(Name, TypeName) \
template<typename T> \
struct __OctaRange##Name { \
typedef typename T::TypeName Type; \
}; \
template<typename T> \
struct __OctaRange##Name<RangeHalf<T>> { \
typedef typename T::TypeName Type; \
}; \
template<typename T> \
using Range##Name = typename __OctaRange##Name<T>::Type;
__OCTA_RANGE_TRAIT(Category, Category)
__OCTA_RANGE_TRAIT(Size, SizeType)
__OCTA_RANGE_TRAIT(Value, ValType)
__OCTA_RANGE_TRAIT(Reference, RefType)
__OCTA_RANGE_TRAIT(Difference, DiffType)
#undef __OCTA_RANGE_TRAIT
// is input range
template<typename T, bool = IsConvertible<
RangeCategory<T>, InputRangeTag
>::value> struct IsInputRange: False {};
template<typename T>
struct IsInputRange<T, true>: True {};
// is forward range
template<typename T, bool = IsConvertible<
RangeCategory<T>, ForwardRangeTag
>::value> struct IsForwardRange: False {};
template<typename T>
struct IsForwardRange<T, true>: True {};
// is bidirectional range
template<typename T, bool = IsConvertible<
RangeCategory<T>, BidirectionalRangeTag
>::value> struct IsBidirectionalRange: False {};
template<typename T>
struct IsBidirectionalRange<T, true>: True {};
// is random access range
template<typename T, bool = IsConvertible<
RangeCategory<T>, RandomAccessRangeTag
>::value> struct IsRandomAccessRange: False {};
template<typename T>
struct IsRandomAccessRange<T, true>: True {};
// is finite random access range
template<typename T, bool = IsConvertible<
RangeCategory<T>, FiniteRandomAccessRangeTag
>::value> struct IsFiniteRandomAccessRange: False {};
template<typename T>
struct IsFiniteRandomAccessRange<T, true>: True {};
// is infinite random access range
template<typename T>
struct IsInfiniteRandomAccessRange: IntegralConstant<bool,
(IsRandomAccessRange<T>::value && !IsFiniteRandomAccessRange<T>::value)
> {};
// is output range
template<typename T, typename P>
struct __OctaOutputRangeTest {
template<typename U, void (U::*)(P)> struct __OctaTest {};
template<typename U> static char __octa_test(__OctaTest<U, &U::put> *);
template<typename U> static int __octa_test(...);
static constexpr bool value = (sizeof(__octa_test<T>(0)) == sizeof(char));
};
template<typename T, bool = (IsConvertible<
RangeCategory<T>, OutputRangeTag
>::value || (IsInputRange<T>::value &&
(__OctaOutputRangeTest<T, const RangeValue<T> &>::value ||
__OctaOutputRangeTest<T, RangeValue<T> &&>::value)
))> struct IsOutputRange: False {};
template<typename T>
struct IsOutputRange<T, true>: True {};
// range iterator
template<typename T>
struct __OctaRangeIterator {
__OctaRangeIterator(): p_range() {}
explicit __OctaRangeIterator(const T &range): p_range(range) {}
__OctaRangeIterator &operator++() {
p_range.pop_front();
return *this;
}
RangeReference<T> operator*() const {
return p_range.front();
}
bool operator!=(__OctaRangeIterator) const { return !p_range.empty(); }
private:
T p_range;
};
// range half
template<typename T>
struct RangeHalf {
private:
T p_range;
public:
typedef T RangeType;
RangeHalf(): p_range() {}
RangeHalf(const T &range): p_range(range) {}
RangeHalf(const RangeHalf &half): p_range(half.p_range) {}
RangeHalf(RangeHalf &&half): p_range(move(half.p_range)) {}
RangeHalf &operator=(const RangeHalf &half) {
p_range = half.p_range;
return *this;
}
RangeHalf &operator=(RangeHalf &&half) {
p_range = move(half.p_range);
return *this;
}
T range() const { return p_range; }
bool next() { return p_range.pop_front(); }
bool prev() { return p_range.push_front(); }
RangeSize<T> next_n(RangeSize<T> n) {
return p_range.pop_front_n(n);
}
RangeSize<T> prev_n(RangeSize<T> n) {
return p_range.push_front_n(n);
}
RangeReference<T> get() const {
return p_range.front();
}
RangeDifference<T> distance(const RangeHalf &half) const {
return p_range.distance_front(half.p_range);
}
bool equals(const RangeHalf &half) const {
return p_range.equals_front(half.p_range);
}
bool operator==(const RangeHalf &half) const {
return equals(half);
}
bool operator!=(const RangeHalf &half) const {
return !equals(half);
}
/* iterator like interface */
RangeReference<T> operator*() const {
return get();
}
RangeReference<T> operator[](RangeSize<T> idx) const {
return p_range[idx];
}
RangeHalf &operator++() {
next();
return *this;
}
RangeHalf operator++(int) {
RangeHalf tmp(*this);
next();
return move(tmp);
}
RangeHalf &operator--() {
prev();
return *this;
}
RangeHalf operator--(int) {
RangeHalf tmp(*this);
prev();
return move(tmp);
}
RangeHalf operator+(RangeDifference<T> n) {
RangeHalf tmp(*this);
if (n < 0) tmp.prev_n(-n);
else tmp.next_n(n);
return move(tmp);
}
RangeHalf operator-(RangeDifference<T> n) {
RangeHalf tmp(*this);
if (n < 0) tmp.next_n(-n);
else tmp.prev_n(n);
return move(tmp);
}
RangeHalf &operator+=(RangeDifference<T> n) {
if (n < 0) prev_n(-n);
else next_n(n);
return *this;
}
RangeHalf &operator-=(RangeDifference<T> n) {
if (n < 0) next_n(-n);
else prev_n(n);
return *this;
}
};
template<typename R>
RangeDifference<R> operator-(const R &lhs, const R &rhs) {
return rhs.distance(lhs);
}
template<typename R>
RangeSize<R> __octa_pop_front_n(R &range, RangeSize<R> n) {
for (RangeSize<R> i = 0; i < n; ++i)
if (!range.pop_front()) return i;
return n;
}
template<typename R>
RangeSize<R> __octa_pop_back_n(R &range, RangeSize<R> n) {
for (RangeSize<R> i = 0; i < n; ++i)
if (!range.pop_back()) return i;
return n;
}
template<typename R>
RangeSize<R> __octa_push_front_n(R &range, RangeSize<R> n) {
for (RangeSize<R> i = 0; i < n; ++i)
if (!range.push_front()) return i;
return n;
}
template<typename R>
RangeSize<R> __octa_push_back_n(R &range, RangeSize<R> n) {
for (RangeSize<R> i = 0; i < n; ++i)
if (!range.push_back()) return i;
return n;
}
template<typename B, typename C, typename V, typename R = V &,
typename S = size_t, typename D = ptrdiff_t
> struct InputRange {
typedef C Category;
typedef S SizeType;
typedef D DiffType;
typedef V ValType;
typedef R RefType;
__OctaRangeIterator<B> begin() const {
return __OctaRangeIterator<B>((const B &)*this);
}
__OctaRangeIterator<B> end() const {
return __OctaRangeIterator<B>();
}
SizeType pop_front_n(SizeType n) {
return __octa_pop_front_n<B>(*((B *)this), n);
}
SizeType pop_back_n(SizeType n) {
return __octa_pop_back_n<B>(*((B *)this), n);
}
SizeType push_front_n(SizeType n) {
return __octa_push_front_n<B>(*((B *)this), n);
}
SizeType push_back_n(SizeType n) {
return __octa_push_back_n<B>(*((B *)this), n);
}
B each() const {
return B(*((B *)this));
}
RangeHalf<B> half() const {
return RangeHalf<B>(*((B *)this));
}
};
template<typename V, typename R = V &, typename S = size_t,
typename D = ptrdiff_t
> struct OutputRange {
typedef OutputRangeTag Category;
typedef S SizeType;
typedef D DiffType;
typedef V ValType;
typedef R RefType;
};
template<typename T>
struct ReverseRange: InputRange<ReverseRange<T>,
RangeCategory<T>, RangeValue<T>, RangeReference<T>, RangeSize<T>,
RangeDifference<T>
> {
private:
typedef RangeReference<T> r_ref;
typedef RangeSize<T> r_size;
T p_range;
public:
ReverseRange(): p_range() {}
ReverseRange(const T &range): p_range(range) {}
ReverseRange(const ReverseRange &it): p_range(it.p_range) {}
ReverseRange(ReverseRange &&it): p_range(move(it.p_range)) {}
ReverseRange &operator=(const ReverseRange &v) {
p_range = v.p_range;
return *this;
}
ReverseRange &operator=(ReverseRange &&v) {
p_range = move(v.p_range);
return *this;
}
ReverseRange &operator=(const T &v) {
p_range = v;
return *this;
}
ReverseRange &operator=(T &&v) {
p_range = move(v);
return *this;
}
bool empty() const { return p_range.empty(); }
r_size size() const { return p_range.size(); }
bool equals_front(const ReverseRange &range) const {
return p_range.equals_back(range.p_range);
}
bool equals_back(const ReverseRange &range) const {
return p_range.equals_front(range.p_range);
}
RangeDifference<T> distance_front(const ReverseRange &range) const {
return -p_range.distance_back(range.p_range);
}
RangeDifference<T> distance_back(const ReverseRange &range) const {
return -p_range.distance_front(range.p_range);
}
bool pop_front() { return p_range.pop_back(); }
bool pop_back() { return p_range.pop_front(); }
bool push_front() { return p_range.push_back(); }
bool push_back() { return p_range.push_front(); }
r_size pop_front_n(r_size n) { return p_range.pop_front_n(n); }
r_size pop_back_n(r_size n) { return p_range.pop_back_n(n); }
r_size push_front_n(r_size n) { return p_range.push_front_n(n); }
r_size push_back_n(r_size n) { return p_range.push_back_n(n); }
r_ref front() const { return p_range.back(); }
r_ref back() const { return p_range.front(); }
r_ref operator[](r_size i) const { return p_range[size() - i - 1]; }
ReverseRange<T> slice(r_size start, r_size end) const {
r_size len = p_range.size();
return ReverseRange<T>(p_range.slice(len - end, len - start));
}
};
template<typename T>
ReverseRange<T> make_reverse_range(const T &it) {
return ReverseRange<T>(it);
}
template<typename T>
struct MoveRange: InputRange<MoveRange<T>,
RangeCategory<T>, RangeValue<T>, RangeValue<T> &&, RangeSize<T>,
RangeDifference<T>
> {
private:
typedef RangeValue<T> r_val;
typedef RangeValue<T> &&r_ref;
typedef RangeSize<T> r_size;
T p_range;
public:
MoveRange(): p_range() {}
MoveRange(const T &range): p_range(range) {}
MoveRange(const MoveRange &it): p_range(it.p_range) {}
MoveRange(MoveRange &&it): p_range(move(it.p_range)) {}
MoveRange &operator=(const MoveRange &v) {
p_range = v.p_range;
return *this;
}
MoveRange &operator=(MoveRange &&v) {
p_range = move(v.p_range);
return *this;
}
MoveRange &operator=(const T &v) {
p_range = v;
return *this;
}
MoveRange &operator=(T &&v) {
p_range = move(v);
return *this;
}
bool empty() const { return p_range.empty(); }
r_size size() const { return p_range.size(); }
bool equals_front(const MoveRange &range) const {
return p_range.equals_front(range.p_range);
}
bool equals_back(const MoveRange &range) const {
return p_range.equals_back(range.p_range);
}
RangeDifference<T> distance_front(const MoveRange &range) const {
return p_range.distance_front(range.p_range);
}
RangeDifference<T> distance_back(const MoveRange &range) const {
return p_range.distance_back(range.p_range);
}
bool pop_front() { return p_range.pop_front(); }
bool pop_back() { return p_range.pop_back(); }
bool push_front() { return p_range.push_front(); }
bool push_back() { return p_range.push_back(); }
r_size pop_front_n(r_size n) { return p_range.pop_front_n(n); }
r_size pop_back_n(r_size n) { return p_range.pop_back_n(n); }
r_size push_front_n(r_size n) { return p_range.push_front_n(n); }
r_size push_back_n(r_size n) { return p_range.push_back_n(n); }
r_ref front() const { return move(p_range.front()); }
r_ref back() const { return move(p_range.back()); }
r_ref operator[](r_size i) const { return move(p_range[i]); }
MoveRange<T> slice(r_size start, r_size end) const {
return MoveRange<T>(p_range.slice(start, end));
}
void put(const r_val &v) { p_range.put(v); }
void put(r_val &&v) { p_range.put(move(v)); }
};
template<typename T>
MoveRange<T> make_move_range(const T &it) {
return MoveRange<T>(it);
}
template<typename T>
struct NumberRange: InputRange<NumberRange<T>, ForwardRangeTag, T, T> {
NumberRange(): p_a(0), p_b(0), p_step(0) {}
NumberRange(const NumberRange &it): p_a(it.p_a), p_b(it.p_b),
p_step(it.p_step) {}
NumberRange(T a, T b, T step = T(1)): p_a(a), p_b(b),
p_step(step) {}
NumberRange(T v): p_a(0), p_b(v), p_step(1) {}
bool empty() const { return p_a * p_step >= p_b * p_step; }
bool equals_front(const NumberRange &range) const {
return p_a == range.p_a;
}
bool pop_front() { p_a += p_step; return true; }
bool push_front() { p_a -= p_step; return true; }
T front() const { return p_a; }
private:
T p_a, p_b, p_step;
};
template<typename T>
NumberRange<T> range(T a, T b, T step = T(1)) {
return NumberRange<T>(a, b, step);
}
template<typename T>
NumberRange<T> range(T v) {
return NumberRange<T>(v);
}
template<typename T>
struct PointerRange: InputRange<PointerRange<T>, FiniteRandomAccessRangeTag, T> {
PointerRange(): p_beg(nullptr), p_end(nullptr) {}
PointerRange(const PointerRange &v): p_beg(v.p_beg),
p_end(v.p_end) {}
PointerRange(T *beg, T *end): p_beg(beg), p_end(end) {}
PointerRange(T *beg, size_t n): p_beg(beg), p_end(beg + n) {}
PointerRange &operator=(const PointerRange &v) {
p_beg = v.p_beg;
p_end = v.p_end;
return *this;
}
/* satisfy InputRange / ForwardRange */
bool empty() const { return p_beg == p_end; }
bool pop_front() {
if (p_beg == p_end) return false;
++p_beg;
return true;
}
bool push_front() {
--p_beg; return true;
}
size_t pop_front_n(size_t n) {
T *obeg = p_beg;
size_t olen = p_end - p_beg;
p_beg += n;
if (p_beg > p_end) {
p_beg = p_end;
return olen;
}
return n;
}
size_t push_front_n(size_t n) {
p_beg -= n; return true;
}
T &front() const { return *p_beg; }
bool equals_front(const PointerRange &range) const {
return p_beg == range.p_beg;
}
ptrdiff_t distance_front(const PointerRange &range) const {
return range.p_beg;
}
/* satisfy BidirectionalRange */
bool pop_back() {
if (p_end == p_beg) return false;
--p_end;
return true;
}
bool push_back() {
++p_end; return true;
}
size_t pop_back_n(size_t n) {
T *oend = p_end;
size_t olen = p_end - p_beg;
p_end -= n;
if (p_end < p_beg) {
p_end = p_beg;
return olen;
}
return n;
}
size_t push_back_n(size_t n) {
p_end += n; return true;
}
T &back() const { return *(p_end - 1); }
bool equals_back(const PointerRange &range) const {
return p_end == range.p_end;
}
ptrdiff_t distance_back(const PointerRange &range) const {
return range.p_end;
}
/* satisfy FiniteRandomAccessRange */
size_t size() const { return p_end - p_beg; }
PointerRange slice(size_t start, size_t end) const {
return PointerRange(p_beg + start, p_beg + end);
}
T &operator[](size_t i) const { return p_beg[i]; }
/* satisfy OutputRange */
void put(const T &v) {
*(p_beg++) = v;
}
void put(T &&v) {
*(p_beg++) = move(v);
}
private:
T *p_beg, *p_end;
};
template<typename T, typename S>
struct EnumeratedValue {
S index;
T value;
};
template<typename T>
struct EnumeratedRange: InputRange<EnumeratedRange<T>,
CommonType<RangeCategory<T>, ForwardRangeTag>, RangeValue<T>,
EnumeratedValue<RangeReference<T>, RangeSize<T>>,
RangeSize<T>
> {
private:
typedef RangeReference<T> r_ref;
typedef RangeSize<T> r_size;
T p_range;
r_size p_index;
public:
EnumeratedRange(): p_range(), p_index(0) {}
EnumeratedRange(const T &range): p_range(range), p_index(0) {}
EnumeratedRange(const EnumeratedRange &it):
p_range(it.p_range), p_index(it.p_index) {}
EnumeratedRange(EnumeratedRange &&it):
p_range(move(it.p_range)), p_index(it.p_index) {}
EnumeratedRange &operator=(const EnumeratedRange &v) {
p_range = v.p_range;
p_index = v.p_index;
return *this;
}
EnumeratedRange &operator=(EnumeratedRange &&v) {
p_range = move(v.p_range);
p_index = v.p_index;
return *this;
}
EnumeratedRange &operator=(const T &v) {
p_range = v;
p_index = 0;
return *this;
}
EnumeratedRange &operator=(T &&v) {
p_range = move(v);
p_index = 0;
return *this;
}
bool empty() const { return p_range.empty(); }
bool equals_front(const EnumeratedRange &range) const {
return p_range.equals_front(range.p_range);
}
bool pop_front() {
if (p_range.pop_front()) {
++p_index;
return true;
}
return false;
}
r_size pop_front_n(r_size n) {
r_size ret = p_range.pop_front_n(n);
p_index += ret;
return ret;
}
EnumeratedValue<r_ref, r_size> front() const {
return EnumeratedValue<r_ref, r_size> { p_index, p_range.front() };
}
};
template<typename T>
EnumeratedRange<T> enumerate(const T &it) {
return EnumeratedRange<T>(it);
}
template<typename T>
struct TakeRange: InputRange<TakeRange<T>,
CommonType<RangeCategory<T>, ForwardRangeTag>,
RangeValue<T>, RangeReference<T>, RangeSize<T>
> {
private:
T p_range;
RangeSize<T> p_remaining;
public:
TakeRange(): p_range(), p_remaining(0) {}
TakeRange(const T &range, RangeSize<T> rem): p_range(range),
p_remaining(rem) {}
TakeRange(const TakeRange &it): p_range(it.p_range),
p_remaining(it.p_remaining) {}
TakeRange(TakeRange &&it): p_range(move(it.p_range)),
p_remaining(it.p_remaining) {}
TakeRange &operator=(const TakeRange &v) {
p_range = v.p_range; p_remaining = v.p_remaining; return *this;
}
TakeRange &operator=(TakeRange &&v) {
p_range = move(v.p_range); p_remaining = v.p_remaining; return *this;
}
bool empty() const { return (p_remaining <= 0) || p_range.empty(); }
bool pop_front() {
if (p_range.pop_front()) {
--p_remaining;
return true;
}
return false;
}
bool push_front() {
if (p_range.push_front()) {
++p_remaining;
return true;
}
return false;
}
RangeSize<T> pop_front_n(RangeSize<T> n) {
RangeSize<T> ret = p_range.pop_front_n(n);
p_remaining -= ret;
return ret;
}
RangeSize<T> push_front_n(RangeSize<T> n) {
RangeSize<T> ret = p_range.push_front_n(n);
p_remaining += ret;
return ret;
}
RangeReference<T> front() const { return p_range.front(); }
bool equals_front(const TakeRange &range) const {
return p_range.equals_front(range.p_range);
}
RangeDifference<T> distance_front(const TakeRange &range) const {
return p_range.distance_front(range.p_range);
}
};
template<typename T>
TakeRange<T> take(const T &it, RangeSize<T> n) {
return TakeRange<T>(it, n);
}
template<typename T>
struct ChunksRange: InputRange<ChunksRange<T>,
CommonType<RangeCategory<T>, ForwardRangeTag>,
TakeRange<T>, TakeRange<T>, RangeSize<T>
> {
private:
T p_range;
RangeSize<T> p_chunksize;
public:
ChunksRange(): p_range(), p_chunksize(0) {}
ChunksRange(const T &range, RangeSize<T> chs): p_range(range),
p_chunksize(chs) {}
ChunksRange(const ChunksRange &it): p_range(it.p_range),
p_chunksize(it.p_chunksize) {}
ChunksRange(ChunksRange &&it): p_range(move(it.p_range)),
p_chunksize(it.p_chunksize) {}
ChunksRange &operator=(const ChunksRange &v) {
p_range = v.p_range; p_chunksize = v.p_chunksize; return *this;
}
ChunksRange &operator=(ChunksRange &&v) {
p_range = move(v.p_range); p_chunksize = v.p_chunksize; return *this;
}
bool empty() const { return p_range.empty(); }
bool equals_front(const ChunksRange &range) const {
return p_range.equals_front(range.p_range);
}
bool pop_front() { return p_range.pop_front_n(p_chunksize) > 0; }
bool push_front() {
T tmp = p_range;
RangeSize<T> an = tmp.push_front_n(p_chunksize);
if (an != p_chunksize) return false;
p_range = tmp;
return true;
}
RangeSize<T> pop_front_n(RangeSize<T> n) {
return p_range.pop_front_n(p_chunksize * n) / p_chunksize;
}
RangeSize<T> push_front_n(RangeSize<T> n) {
T tmp = p_range;
RangeSize<T> an = tmp.push_front_n(p_chunksize * n);
RangeSize<T> pn = an / p_chunksize;
if (!pn) return 0;
if (pn == n) {
p_range = tmp;
return pn;
}
return p_range.push_front_n(p_chunksize * an) / p_chunksize;
}
TakeRange<T> front() const { return take(p_range, p_chunksize); }
};
template<typename T>
ChunksRange<T> chunks(const T &it, RangeSize<T> chs) {
return ChunksRange<T>(it, chs);
}
template<typename T>
auto each(T &r) -> decltype(r.each()) {
return r.each();
}
template<typename T>
auto each(const T &r) -> decltype(r.each()) {
return r.each();
}
template<typename T, size_t N>
PointerRange<T> each(T (&array)[N]) {
return PointerRange<T>(array, N);
}
// range of
template<typename T> using RangeOf = decltype(each(declval<T>()));
template<typename T>
struct HalfRange: InputRange<HalfRange<T>,
RangeCategory<T>, RangeValue<T>, RangeReference<T>, RangeSize<T>,
RangeDifference<T>
> {
private:
T p_beg;
T p_end;
public:
HalfRange(): p_beg(), p_end() {}
HalfRange(const HalfRange &range): p_beg(range.p_beg),
p_end(range.p_end) {}
HalfRange(HalfRange &&range): p_beg(move(range.p_beg)),
p_end(move(range.p_end)) {}
HalfRange(const T &beg, const T &end): p_beg(beg), p_end(end) {}
HalfRange(T &&beg, T &&end): p_beg(move(beg)), p_end(move(end)) {}
HalfRange &operator=(const HalfRange &range) {
p_beg = range.p_beg;
p_end = range.p_end;
return *this;
}
HalfRange &operator=(HalfRange &&range) {
p_beg = move(range.p_beg);
p_end = move(range.p_end);
return *this;
}
bool empty() const { return p_beg == p_end; }
bool pop_front() {
if (empty()) return false;
return p_beg.next();
}
bool push_front() {
return p_beg.prev();
}
bool pop_back() {
if (empty()) return false;
return p_end.prev();
}
bool push_back() {
return p_end.next();
}
RangeReference<T> front() const { return *p_beg; }
RangeReference<T> back() const { return *(p_end - 1); }
bool equals_front(const HalfRange &range) const {
return p_beg == range.p_beg;
}
bool equals_back(const HalfRange &range) const {
return p_end == range.p_end;
}
RangeDifference<T> distance_front(const HalfRange &range) const {
return range.p_beg - p_beg;
}
RangeDifference<T> distance_back(const HalfRange &range) const {
return range.p_end - p_end;
}
RangeSize<T> size() const { return p_end - p_beg; }
HalfRange<T> slice(RangeSize<T> start, RangeSize<T> end) const {
return HalfRange<T>(p_beg + start, p_beg + end);
}
RangeReference<T> operator[](RangeSize<T> idx) const {
return p_beg[idx];
}
void put(const RangeValue<T> &v) {
p_beg.range().put(v);
}
void put(RangeValue<T> &&v) {
p_beg.range().put(move(v));
}
};
template<typename T>
HalfRange<RangeHalf<T>>
make_half_range(const RangeHalf<T> &a, const RangeHalf<T> &b) {
return HalfRange<RangeHalf<T>>(a, b);
}
}
#endif